Open Pharmaceutical Sciences Journal

2016, 3 : 99-116
Published online 2016 June 15. DOI: 10.2174/1874844901603010099
Publisher ID: PHARMSCI-3-99

RESEARCH ARTICLE
The Effect of Adding Indirect Relationship to Turbo Similarity Searching

Nurul H. A. Hassain Malima, * , Yong Pei-Chiaa , Marwah H. Al-Lailaa,b and Shereena M. Arif c
a School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
b University of Mosul, Mosul, Iraq
c University Kebangsaan Malaysia, Selangor, Malaysia

* Address correspondence to this author at the School of Computer Sciences, University Sains Malaysia, 11800, Penang, Malaysia; Tel/Fax: +604-6534645; E-mail: nurulhashimah@usm.my

ABSTRACT

Background:

Turbo Similarity Searching (TSS) has been proved as one of the effective and simple searching method in Cheminformatics. Emerging from the conventional similarity searching, TSS depended on the concept of fusion where relationship between the target being sought and the compound in the database are indirect. Previous works has looked at only one level of indirect relationship and indicates that there are further potential that more levels of such relationship be added to TSS to increase its ability to recover more actives. Hence, in this work, we aimed to investigate the impact of the indirect relationship on TSS.

Method:

This study has further investigated the enhancement of TSS using additional layers of indirect relationship and fusion process. We implemented TSS by adding another layer of fusion between the target and database compound.

Results:

The experiments with MDDR database showed that the proposed new strategy described in this paper provide a way of enhancing the effectiveness of the TSS process in chemical databases. The experiments also showed that the increases in performance are particularly better when the sought actives are structurally diverse.

Conclusion:

We may conclude that the additional layers do increase the recall of TSS. Hence, the new TSS strategy could be used as an alternative to the old TSS.

Keywords:

Chemoinformatics, MDL Drug Data Report, Nearest Neighbors, Similarity Searching, Turbo Similarity Searching, Virtual Screening.