The Open Chemical Physics Journal

2012, 4 : 1-7
Published online 2012 February 24. DOI: 10.2174/1874412501204010001
Publisher ID: TOCPJ-4-1

Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation

Can Cao , Lingna Chen , Weirong Huang and Hui Xu
School of Physics Science and Technology, Central South University, Changsha 410083, People's Republic of China.

ABSTRACT

By using non-equilibrium Green's functions in combination with the density-functional theory, we study the effect of zigzag graphene nanoribbons with edge hydrogenation and oxidation on transport properties. We find that for the ferromagnetic (FM) configuration the ZGNRs with CH2-CH group exhibit spin diode effect in which only one spin can occur under positive bias while the other spin occurs under negative bias. In the antiferromagnetic (AF) state the symmetric ZGNRs with CH2-CH group show the spin filter effect within some specific energy windows. However, the asymmetric ZGNRs with CH2 -CH group do not show such a spin filter effect. We also find that the symmetric and asymmetric ZGNRs with C2O-CH group in AF configurations show similar transport behaviors at the Fermi level. Such ZGNRs might be exploited in spintronic nanodevices.

Keywords:

Transport properties, spin-diode effect, first-principles, spin filter.