The Open Epidemiology Journal

2013, 6 : 18-20
Published online 2013 October 4. DOI: 10.2174/1874297101306010018
Publisher ID: TOEPIJ-6-18

Binary Regression Models with Log-Link in the Cohort Studies

Katri Jalava , Sirpa Räsänen , Kaija Ala-Kojola , Saara Nironen , Jyrki Möttönen and Jukka Ollgren
Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland.

ABSTRACT

Regression models have been used to control confounding in food borne cohort studies, logistic regression has been commonly used due to easy converge. However, logistic regression provide estimates for OR only when RR estimate is lower than 10%, an unlikely situation in food borne outbreaks. Recent developments have resolved the binary model convergence problems applying log link. Food items significant in the univariable analysis were included for the multivariable analysis of two recent Finnish norovirus outbreaks. We used both log and logistic regression models in R and Bayesian model in Winbugs by SPSS and R. The log-link model could be used to identify the vehicle in the two norovirus outbreak datasets. Convergence problems were solved using Bayesian modelling. Binary model applying log link provided accurate and useful estimates of RR estimating the true risk, a suitable method of choice for multivariable analysis of outbreak cohort studies.

Keywords:

Cohort studies, linear models, regression analysis.