The Open Mechanical Engineering Journal
2017, 2017, 11 : 1-13Published online DOI: 10.2174/1874155X01711010001
Publisher ID: TOMEJ-11-1
RESEARCH ARTICLE
Failure Analysis for a Low Pressure Aeroengine Turbine Vane
*Address correspondence to this authors at the Dept. of Industrial Engineering, Giovanni Paolo II, 132, University of Salerno, Fisciano (SA), Italy; Tel: +3908994111; E-mail: rcitarella@unisa.it
ABSTRACT
Background & Objective
In this work, a thermo-mechanical fatigue application related to a fracture process simulation in a turbine vane is implemented, using a submodelling approach based on the principle of linear superposition.
Method
The proposed crack propagation approach leverages on a combined use of FEM and DBEM methodologies: the global analysis is solved by using FEM whereas the fracture problem is demanded to DBEM. In particular, a DBEM submodel is extracted from a global uncracked FE model and, in the new proposed formulation, boundary conditions are applied just on crack faces rather than loading subdomain boundaries with displacements/tractions and temperatures, as in the classical approach.
Results & Conclusion
The adopted approach solves the fracture problem by using simpler pure stress analyses rather than by thermal-stress analyses, as requested by the classical approach. Boundary conditions applied on the submodel crack faces come from the solution of a FE uncracked global model. The computational advantages of such alternative approach are highlighted and, in addition, a fatigue assessment is provided for a turbine vane, considering as initial crack the maximum design defect dictated by GE-Avio regulations for such kind of components.