The Open Medical Informatics Journal
2008, 2 : 105-111Published online 2008 June 5. DOI: 10.2174/1874431100802010105
Publisher ID: TOMINFOJ-2-105
RESEARCH ARTICLE
Diabetic Erythrocytes Test by Correlation Coefficient
2 Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
3 Instituto de Calculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Ciudad de Buenos Aires, Argentina
* Address correspondence to this author at the Instituto de Calculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Ciudad de Buenos Aires, Argentina; Email: oarosso@fibertel.com.ar
ABSTRACT
Even when a healthy individual is studied, his/her erythrocytes in capillaries continually change their shape in a synchronized erratic fashion. In this work, the problem of characterizing the cell behavior is studied from the perspective of bounded correlated random walk, based on the assumption that diffractometric data involves both deterministic and stochastic components. The photometric readings are obtained by ektacytometry over several millions of shear elongated cells, using a home-made device called Erythrodeformeter. We have only a scalar signal and no governing equations; therefore the complete behavior has to be reconstructed in an artificial phase space. To analyze dynamics we used the technique of time delay coordinates suggested by Takens, May algorithm, and Fourier transform. The results suggest that on random-walk approach the samples from healthy controls exhibit significant differences from those from diabetic patients and these could allow us to claim that we have linked mathematical nonlinear tools with clinical aspects of diabetic erythrocytes’ rheological properties.