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Abstract: Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. 

Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and 

slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth us-

ing a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid 

data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF 

was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained 

with HCS CellMask
™

 Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both 

image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating 

autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and in-

hibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluores-

cence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick 

compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, flu-

drocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass 

primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of 

large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neu-

ronal cells. 
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INTRODUCTION 

 The development of rapid screening methods to detect 
and quantify the effect of biochemical substances on a vari-
ety of cell types, including neurons, is an extremely active 
area of research [1, 2]. In both toxicology and drug devel-
opment, in vitro assays have used transformed and primary 
neurons to evaluate the effect of compounds on neurite out-
growth and cell survival [3-5].  

 Neurite measurement assays rely on photomicrography 
combined with manual or software-based analytical methods 
to measure neurite formation, elongation, and regression to 
determine the effect of compounds on differentiated and un-
differentiated neurons. For the most part, these methods are 
cumbersome and unsuitable for even low throughput screen-
ing (LTS) of compounds. The morphometric methods for 
assessment of neurite outgrowth can be classified into two 
broad categories: manual analysis [6] and newer techniques 
which employ automated imaging technologies [7]. 

 Traditionally, manual analysis of photomicrographic im-
ages has been standard procedure for quantifying phenotypic 
changes in cultured neurons. Although the process in some 
cases employs limited automation, it is labor intensive, time  
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consuming, and error prone, making it unsuitable for screen-
ing of chemical libraries. Nonetheless, manual methods are 
still utilized extensively in many research laboratories due to 
the relatively low cost of reagents, analytical instruments and 
ease of implementation [8, 9]  

 In an effort to automate neurite imaging and analysis, 
algorithms specifically designed to measure various aspects 
of neurite outgrowth have been developed [4, 10-13]. These 
programs have enabled semi-automated processing of pho-
tomicrographs taken by inverted microscope, significantly 
reducing the time spent on analysis of imaging data. Even so, 
there are limitations inherent in the use of these types of al-
gorithms. Because of their highly interactive nature, the need 
for frequent operator intervention, and a limited capacity to 
process large numbers of images, throughput and precision 
both suffer. 

 As the current research trend in neurodegenerative dis-
eases continues to shift towards translational medicine, the 
screening of large chemical libraries for disease modulators 
becomes essential. To meet the need for phenotype-
dependent cell based high throughput screening (HTS) vari-
ous commercial instrument platforms for high resolution 
imaging of cellular processes have become available to sat-
isfy the demand for robust HT systems. Despite their avail-
ability, these instruments require the commitment of signifi-
cant financial resources for acquisition, maintenance and 
operation. In addition, existing assay methods for recogni-
tion of fine cellular process are generally non-homogenous 
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and require expensive immunofluorescence detection rea-
gents and multiple handling steps. Despite these disadvan-
tages, there has been a proliferation of high resolution imag-
ing platforms in academic core laboratories and government 
research institutions.  

 To address the need for inexpensive, homogeneous and 
robust HTS methods for the assessment of neurite outgrowth 
across a range of imaging platforms, we have developed two 
protocols using HCS CellMask

™
 Red and GFP expression as 

alternatives to the widely used non-homogeneous and more 
expensive antibody-based labeling method. Our method uses 
NeuroScreen-1 (NS-1) cells, a neuronal model derived from 
the well-characterized PC12 pheochromocytoma line [14] 
which has been used successfully in high content neurite 
outgrowth screens of neurotoxins [5, 15]. In addition, we 
have developed a simplified measurement algorithm that 
takes fewer data points per sample, thus reducing data proc-
essing times and storage space, ultimately increasing 
throughput by increasing the rate of data input and decreas-
ing the data volume acquired per sample. These protocols 
accurately measured known agonist (NGF) and antagonist 
(SU6656) dose-responses and successfully identified neurite-
growth promoting compounds from a 1,120 member Prest-
wick library. Although we used NS-1 as test case, this 
method can be readily applied to other neuronal cell models. 

MATERIALS AND METHODOLOGY 

Cell Culture 

 NS-1 cells purchased from Cellomics (Cellomics Inc., 
Pittsburgh, PA) were maintained in culture medium consist-
ing of RPMI 1640 containing 10% fetal bovine serum (FBS), 
2mM glutamine and 100 g/mL penicillin/streptomycin 
(pen/strep) at 37°C in a 5% CO2 humidified incubator.

Establishment of GFP-Expressing NS-1 Cells 

 To establish a GFP-positive cell line, actively growing 
cells were split to ~20% confluence in 175cm

2
 tissue culture 

flasks and cultured for 3 days prior to transfection. On the 
day of transfection, the cells were detached with versene, 
counted and transfected with the green fluorescent protein 
(GFP) expression vector, pMAXGFP using the Amaxa Nu-
cleofector® (Amaxa GmbH, Koln, Germany). The transfec-
tion was performed using the protocol for PC12 cells as de-
tailed in the Amaxa cell transfection database. Stable colo-
nies expressing GFP were selected with G418 and sorted by 
expression analysis based on the intensity of GFP with a 
FACSAria™ cell sorter (Becton Dickinson, San Jose, CA) 
using WinList™ software (Verity, Topsham, ME) for data 
analysis. The cell populations were expanded and stored 
under cryogenic conditions to ensure reproducible testing 
results. Cell exhibiting moderate levels of GFP expression in 
the cell cytoplasm and neuritic processes was designated 
NS1-GFP medium and used for experiments described 
herein.  

Assay Plate Preparation 

 Becton Dickinson 96-well imaging plates (BD Falcon™ 
353219) were coated with 50 L/well collagen type I solution 
(10 g/mL) at 23°C for 1 h. The collagen solution was re-
moved by vacuum aspiration and the plates were washed 
twice with 100 L calcium and magnesium free (CMF) Dul-

becco’s phosphate buffered saline (DPBS) (Invitrogen, 
Carlsbad, CA), air dried for 20 min in a biosafety cabinet 
under ultraviolet (UV) light and used immediately. Untrans-
fected and GFP expressing NS-1 cells were seeded in the 96-
well collagen coated imaging plate in growth medium at 
4x10

4 
cells/well for 18 to 24 h prior to compound treatment. 

Compound Treatment 

 NS-1 or NS1-GFP cells were exposed for 48 h to 2.5S 
murine NGF (Millipore, Billerica, MA) serially diluted to 
concentrations ranging from 0.05 ng/mL to 25 ng/mL in 
RPMI containing 2%FBS (treatment medium). Half maximal 
effective concentration (EC50) values for each lot of NGF 
were determined and used as positive controls and as the 
stimulus concentration for NGF-induced neurite outgrowth 
screens. For inhibition assays, cultured cells were treated 
with SU6656 (EMD Biosciences, San Diego, CA) at concen-
trations ranging from 0.04 μM to 20 M in 25 L volumes. 
After 30 min incubation at 37°C, NGF was added in 25 L 
to yield a final concentration of 20ng/mL, and SU6656 con-
centration from 20 nM to 10 μM. The cells were then incu-
bated for 48 h and assayed by the HCS CellMask Red™ 
(HCMR) method described below. The half maximal inhibi-
tory concentration (IC50) value was determined by fitting the 
normalized inhibitor dose response curve in GraphPad 
Prism. The response data were normalized to 0ng/mL NGF 
for minimal neurite outgrowth and 20ng/mL NGF as maxi-
mum neurite outgrowth  

 For screening of the Prestwick library, cells were seeded 
overnight in culture medium. The next day 2mM library 
compounds in 100% DMSO delivered to 96-well compound 
plates (#3359, Corning, Lowell, MA,) were diluted with se-
rum-free medium (SFM) to 5 M and 25 L of the diluted 
compounds was exchanged for the culture medium. The cell 
plates were returned to the 37°C incubator for 45 min. 
Thereafter, 25 L of 4ng/mL NGF in RPMI containing 4% 
FBS was added to the culture wells to produce a final con-
centration of 2.5 μM compound, 2ng/ml NGF and 2% FBS 
in the assay. The plates were then incubated at 37°C for 48h 
before fixing, staining and analysis. 

Fixation and Staining 

 GFP-labeled NS-1cells were permeabilized and stained 
for nuclear identification in the dark at 23°C for 30 min us-
ing 4% buffered formaldehyde (50 l/well) containing 
0.2 g/ml Hoechst 33342. This process coupled cell perme-
abilization to nuclear staining in a single step. For the label-
ing of untransfected cells, a solution containing 0.2 g/ml 
Hoechst dye and 1.5 g/ml HCS CellMask Red™ (Invitro-
gen, Eugene OR) was prepared in 4% formaldehyde. Treat-
ment media was aspirated from the cells and replaced with 
50 μL of staining solution. Thereafter, plates were sealed and 
incubated in the dark at 23°C for 30 min. This process 
yielded fixed samples with Hoechst-stained nuclei and 
HCMR-stained cell bodies and extensions. 

 For comparison, standard immunofluorescence-based 
labeling of NS-1 cells was performed using the Thermo Sci-
entific Cellomics® Neurite Outgrowth Kit according the 
manufacturer’s instructions. The kit includes a mouse anti-

III-tubulin primary antibody and a DyLight™ 488-
conjugated goat anti-mouse secondary antibody. Briefly, 
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medium in the test plates was aspirated and the cells were 
incubated in prewarmed fixation/Hoechst solution for 1.5 h. 
The wells were washed three times with 1X neurite out-
growth buffer and incubated for 1 h with primary anti- III-
tubulin antibody. The wash step was repeated once more and 
the cells incubated for 1 h with fluorescent secondary anti-
body. Final washes were performed using twice each with 
1X neurite outgrowth buffer and wash buffer-M prior to im-
age analysis.  

Image Data Collection 

 Images were collected on a BD Pathway 855™ Bioimag-
ing System using a high resolution cooled CCD camera (12 
bit, high QE, effective pixels 1344 x 1040). A 3x3 montage 
data was collected for each well using a 20x objective 
(Olympus, Semi-Plan Apochromat; NA 0.4; 6.9 mm WD). 
Data collection was automated to include autofocus during 
montage collection and separate images for nuclei, neurites 
and neuronal bodies were collected. Hoechst fluorescence 
was collected at 380/10nm excitation and 435 nm long pass 
(LP) emission, whereas GFP and DyLight 488 fluorescence 
were collected at 488/10nm excitation and 530/25nm emis-
sion. CellMask Red™ fluorescence was collected using 
555/28nm excitation and 645/75nm emission filters. The 
CCD camera chip binning mode was set to 2x2. This proc-
essing step reduced data volume by 75% and analysis time 
by 60% (Table 1) over standard methods. 

Image Data Analysis 

 Image data from 96-well data sets were analyzed using 
BD AttoVision™ 1.6 software which included the “Neurite 
Outgrowth” module. Hoechst-stained nuclei were segmented 
with a watershed algorithm following the application of 
shading and sharpening filters. Nuclear object size parame-
ters were limited to minimum and maximum values to 
minimize artifacts in analysis. Likewise, segmentation was 
applied to the identification of “cytoplasm” objects stained 
with HCMR. Again, object size limitations were employed 
to minimize artifacts in automated analysis. The proprietary 
Neurite Outgrowth module in AttoVision™ allowed the as-
signment of limiting gates (in pixels) to neurite length and 
we chose values which correlated to 1.5X the average cell 
body width for images generated with our detection system. 
In addition, this analysis module provided for specific dila-
tion of the cytoplasmic objects to minimize artifacts resulting 
from weak staining of cellular edges. The module produced 
data sets which included maximum neurite length, root 
count, total neurite length and average neurite length for 
each cell identified in the image. The resulting treatment data 
files were averaged and normalized using “0 NGF” and 
“EC50 NGF” concentrations as the minimum and maximum 
normalizing controls respectively for determination of a per-
cent response. We used the average total neurite length as 

our primary analysis parameter in the normalization since it 
provided a broader range of values for data normalization 
compared to values such as “neurites per cell”. A compara-
tive analysis of the acquired data and measurement parame-
ters derived through this method and other published proto-
cols are presented in the Table 2. 

RESULTS 

 We sought to generate a simple robust method with 
which we could visualize and measure activities of large 
chemical compound libraries on neurite processes rapidly 
and inexpensively in a high throughput environment. Since 
NS-1 cells are a subclone of PC12 cells that have been used 
successfully in screening the effects of neurotoxins on neu-
rite outgrowth with immunofluorescence tags [5, 15] we 
used this line to explore the utility of green fluorescent pro-
tein (GFP) expression and HCS CellMask™ Red dye as al-
ternatives to the antibody staining method.  

 To generate a GFP line we stably transfected NS-1 cells 
with pMAX-GFP expression vector. The expression of GFP 
was heterogeneous, represented as three major spectral popu-
lations of cells. The heterogeneity prevented accurate enu-
meration of the cells due to failure of the camera to auto fo-
cus on cells as a result of the distortion in fluorescence 
caused by the intensity gradient. In addition, the cells gradu-
ally lost GFP expression with passage number, resulting in 
increased heterogeneity, and the appearance of revertants 
from low GFP expressing cells.  

 In order to minimize the GFP signal gradient and ensure 
reproducibility of the data, we sorted the cell populations by 
FACS analysis and collected samples based on fluorescence 
intensity-dependent gating (Fig. 1). About 80% of the sorted 
cell population exhibited fluorescence intensity of at least 
10-fold compared to untransfected cells.  

 The cell fractions, which were relatively homogeneous 
after sorting, were tested in the neurite outgrowth assay. At 
this point the camera was able to autofocus with precision on 
the cells due to uniformity of the GFP fluorescence in the 
cell populations. The cell fractions were rapidly expanded 
and frozen for future use and we chose to continue our work 
with the cell population which showed moderate GFP fluo-
rescence, because of slow growth characteristics observed 
with the high expressors. In cells with moderate expression, 
GFP fluorescence was clearly visible throughout the cyto-
plasm and neurite processes when viewed by fluorescence 
microscopy (Fig. 2A).  

 In addition to the recombinant GFP assay, we developed 
an alternative dye method to visualize elongated neurites by 
modifying the one-step fixation/stain method of Mitchell et. 
al. [4]. To the fixative and nuclear stain Hoechst 33342, we 
added HCS CellMask Red™, a stain to identify overall cell 
morphology, including neurite extensions. Cells double-

Table 1. Data Volume Reduction by Camera Binning 

Image Montage CCD Bin Size File Size (MB) Total Data Volume (GB)/Plate Analysis Time (min) 

3x3 1x1 24 4.5 170 

3x3 2x2 6 1.125 66 
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Table 2. Comparison of Data Acquisition and Analysis Method Described Herein with Other Published Methods 

 
Ramm (Ref. 

#24) 
Price (Ref. #25) Mitchell (Ref. #4) Radio (Ref. #5) Yeyeodu (This paper) 

Instrument 

IN Cell Ana-

lyser 1000 

(Amersham) 

Automated micro-

scope stage (Prior 

Scientific) 

 

Ludl stage ArrayScan V (Cellomics) BD Pathway 855 

Acquisition 

software 
(included) 

(Media Cybernet-

ics) 
VolumeScan (Vaytek) (included) BD AttoVision™ 1.6 

Autofocus yes yes yes yes yes 

Image intensity 

resolution 
12 bit NR 24 bit NR 12 bit 

Analysis soft-

ware 
(included) 

custom algorithm 

(Advansoft) in 

ImagePre Plus 4.1 

(Media Cybernet-

ics) 

custom algorithm (detailed in 

text) in ImagePro Plus 
(included) 

BD AttoVision™ 1.6 with 

Neurite Outgrowth Mod-

ule 

Neurite defined 
~2x cell diam. 

(30 m) 
NR NR 

~2x total neurite length in 

cells w/o NGF (> 20 m) 
>1.5x cell width 

Parameters 

measured 
     

Total neurite 

length 
yes  yes  yes 

Total cell body 

area 
yes     

Num. neurites yes    yes 

Avg cell diame-

ter 
yes     

Num. nuclei or 

cells 
 yes yes yes yes 

Individual neu-

rite length 
 yes    

Num. branches  yes  yes yes 

Maximum neu-

rite length 
  yes  yes 

Neurites/cell    yes yes 

Cell body area    yes  

Parameters 

derived 
     

% neurite bear-

ing cells 
 yes yes   

Num. cells yes    yes 

Mean neurite 

length 
yes yes yes  yes 

Total neurite 

length/cell 
yes yes   yes 

Mean neurite 

length/cell 
   yes yes 

NR=not reported. 
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Fig. (1). Fluorescence intensity profile of GFP expressing NS-1 cells. A flow cytometry histogram showing the profile of a mixed population 

of GFP expressing NS-1 cells (green shading) relative to the population of untransfected NS-1 cells (gray shading). In this example, 80% of 

the NS1-GFP population exhibited an intensity of at least 10 times that of the control population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). A comparison of fluorescent images generated by the three staining methods. GFP-NS-1cells (A), III-tubulin immunofluorescence 

(B) and HCS CellMask™ Red (C) fluorescence images of cell bodies and neurites were acquired on the BD Pathway 855 Bioimager. Unal-

tered, exemplar TIFF files were retrieved with “ImageJ” software and the “Yellow Hot” look-up table was used to determine relative intensi-

ties; no other data manipulations were applied. A gray scale ramp is shown in panel C. 
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stained with Hoechst and CellMask Red™ (HCMR), were 
effectively visualized as shown in Fig. (2C).  

 Compared with the standard indirect immunofluorescent 
detection of neurites with III-tubulin (Fig. 2B), both GFP 
expression and HCMR staining of NS-1 cells offered compa-
rable images (Fig. 2A&C) that were generated in a much 
shorter timeframe than other published neurite outgrowth 
detection and analysis methods (Table 3). 

 In order to establish that GFP expression and CellMask™ 
Red staining accurately reflected the pharmacological re-
sponse of NS-1 cells to NGF, we treated cells with varying 
doses of NGF and measured percent neurite response as a 
function of NGF concentration. Following NGF treatment, 
the cells were imaged by both direct methods described in 
this paper, and the dose-response curves were compared to 
the curve generated with the standard antibody labeling 
method (Fig. 3). The resulting curves produced comparable 
EC50 values of 3.3 ng/ml for GFP expressing cells, 2.1 ng/ml 
for anti III-tubulin labeled cells, and 1.4 ng/ml for HCMR 
stained cells. These results are in agreement with each other 
and data reported for antibody detection of NGF induced 
neurite outgrowth in NS-1 in the vendor technical bulletin 
(Cellomics, Pittsburg, PA). The data also showed that NS-1 
cells are approximately 5-fold to 8-fold more sensitive to 
recombinant mouse 2.5S NGF compare to literature values 
reported for the parent PC12 cells [16]. 

 Because the HCMR dye method presented a much faster 
alternative to GFP expression for enabling neurite outgrowth 
assays and is potentially applicable to other neuronal cells, 

we used the HCMR assay for the remainder of our studies. 
To further validate HCMR as a viable method for accurate 
assessment of neurite outgrowth, we tested whether the 
method could accurately model the dose-response profile of 
SU6656, a Src-family kinase inhibitor [17] for the inhibition 
of neurite outgrowth [18, 19]. As shown in the sigmoidal 
curve (Fig. 4), SU6656 caused a dose-dependent inhibition 
of neurite outgrowth induced by 20 ng/mL NGF. This con-
centration of NGF, which correlates to the EC90 of NGF for 
neurite outgrowth in NS-1 cells, was determined from a dose 
response assay with escalating concentrations of NGF. The 
calculated SU6656 IC50 of 64 nM is well within the range of 
SU6656 IC50s for various Src-kinase family members.  

 Finally, to further validate the suitability of the HCMR 
assay for high throughput screening of neurite outgrowth 
modulators, we used the assay to screen a 1,120-member 
Prestwick library of FDA-approved small molecules for en-
hancers of NGF-dependent neurite-outgrowth. NS-1 cells 
were pretreated with 3 μM library compounds for 45 min at 
37

o
 C prior to NGF addition. The final concentration of NGF 

and compound is 2 ng/ml and 1.5 μM, respectively. Com-
pound effect on neurite outgrowth was measured after 48 h 
of incubation.  

 The assay identified several compounds with  150% 
response compared to 2 ng/ml NGF alone in two separate 
runs. Among these were four compounds which have previ-
ously been shown to promote neurite outgrowth, namely 
zaprinast [20], etoposide [21], corticosterone [22] and sero-
tonin [23]. Of these, six compounds yielded a response 

Table 3. Comparison of Sample Preparation and Assay Conditions 

 
Ramm  

(Ref. #24) 

Price  

(Ref. #25) 

Mitchell  

(Ref. #4) 

Radio 

(Ref. #5) 

Yeyeodu  

(This paper) 

Detection method(s) 

Abs: primary + 

FITC-

secondary 

Coomassie blue 

G-250 

Hoechst + Ab: pri-

mary + AlexaFluor + 

488-secondary 

Hoechst + Ab: pri-

mary + AlexaFluor + 

488-secondary 

a) Hoechst + GFP ex-

pressing cells or 

b) Hoechst + CellMask 

Red dye 

Plate/pretreat 8 h 5 d 4-6 d 1-4 d 16-24 h 

      

Treat 3 d 4 d 16-24 h 4 d 2 d 

      

Total time in culture >3 d 9 d >4.5 d 5 d <3 d 

      

Cell preparation for imaging      

Fix(/stain) 2 h 1 h 30 min 20 min 30 min 

Permeabilize/wash  30-60 min - 30 min 30 min - 

Primary Antibody 1 h - 18 h 1 h - 

Secondary Antibody 1 h - 1 h 1 h - 

Final stain - ON - - - 

Total preparation time 4.5-5 h ON ON 3 h 30 min 

ON=overnight; Abs=Antibodies; d=day(s). 
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Fig. (3). Comparison of NGF dose on neurite outgrowth response measured by three visualization methods. NS-1 cell neurites were visual-

ized by transfection with GFP (GFP), staining with anti- III-tubulin followed by DyLight 488-conjugated secondary antibody (anti- III 

tubulin) or staining with CellMask Red (CellMask Red). Data were normalized using responses to 0ng/ml and 50ng/ml NGF as minimum 

and maximum total neurite length/cell, respectively. Calculated EC50 values were 3.3, 2.1 and 1.4 ng/ml using GFP, anti- III-Tubulin and 

CellMask Red, respectively. Values plotted are means ± S.E.M. (n=4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Inhibition of NGF-induced neurite outgrowth by Src-family kinase inhibitor SU6656. NS-1 cells were treated with varying doses of 

SU6656, and then NGF was added to a final concentration of 20ng/ml. Neurite outgrowth was analyzed at 48h by HCMR. The curve was 

fitted in GraphPad PRISM using a 4-parameter logistic model with recursive least squares weighting. Each point represents an average of 

three experiments in triplicate. The bars represent the standard deviation of the data from the means.  

greater than 200%, our threshold for the assay, compared to 
background outgrowth in the presence of 2 ng/ml NGF (Fig. 
5). The activity values of these compounds in the two inde-
pendent tests were very similar. Using a threshold of two-
fold enhancement of total neurites as cut off, the actives rate 
in this assay is 0.5%. Compiled values of the average win-
dow (defined as the plate mean of NGF-stimulated control 
values divided by the plate mean of non-stimulated control 
values) and the average of Z primes from a representative 
plate set (n =14) were 4.8 and 0.57 respectively. 

 Besides etoposide which is already known to promote 
neurite outgrowth at sublethal concentrations, the assay iden-

tified the steroidal (isoflupredone acetate) and non-steroidal 
(oxyphenbutazone) anti-inflammatory agents, an adrenocor-
ticoid (fludrocorticone acetate) that promotes Na

+
 retention 

and K
+
 excretion in renal tubules, a guanosine analog 

(thioguanosine), and a plant hormone (gibberellic acid) 
known to stimulate rapid stem and root growth. A list of the 
most active compounds, their structures and functional clas-
sification is presented in Table 4. 

DISCUSSION 

 We report a rapid high throughput screen to identify 
compounds which affect intrinsic functions of neurons that 
lead to phenotypic changes in neurite extension or neuronal 
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Fig. (5). Active compounds exhibiting greater than 200% activity in two separate experiments. NS1 cells were treated with 2 ng/mL NGF in 

the presence of 1.5 μM compounds for 48 h and stained with a cocktail of Hoechst and HCS CellMask Red™ for 30 min. Data was acquired 

on the BD Pathway855 imaging station and analyzed with BD Attovision™ 1.6 software. The histograms represent the compound activity 

measured as total neurites per cell over background of 2 ng/mL NGF in two independent experiments; the error bars represent standard devia-

tions. 

 

Table 4. Active Potentiators of NGF-Induced Neurite Outgrowth Identified from Prestwick Compound Set 

Name Structure Formula Molecular weight Classification/ function 

Isoflupredone acetate 

F

O
O

O

O

OH
CH

3
OH

CH
3

CH
3

H

H

Chiral

 

C23H29FO6 420.5 Anti-inflammatory sterol 

 

Fludrocortisone acetate 

 

N

N

N

O

N

SH

NH
2

OHOH

OH Chiral

 

C23H31FO6 422.5 Aldosterone analog 

 

Thioguanosine 

O

O

O

O

OO

O

OH

CH
3

CH
3

O

OH

OH

O

O

CH
3

H

H

Chiral

 

C10H13N5O4S 299.3 

Purine antagonist cell 

stressor used in the treat-

ment of acute nonlympho-

cytic leukemias  

Etoposide 

O

O

O
CH

2

OH

CH
3
OH

OH
H

H

Chiral

 

C29H32O13 588.6 

Topoisomerase II inhibi-

tor shown to promote 

neurite outgrowtha 
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(Table 4). Contd….. 

Name Structure Formula Molecular weight Classification/ function 

Gibberellic acid 
N

N
O

O

OH

CH
3

 

C19H22O6 346.4 
Growth-inducing Plant 

hormoneb 

Oxyphen-butazone 

 

C19H20N2O3 324.4 
NSAID with multiple  

molecular targets 

NSAID: non-steroid anti-inflammatory. 
a(Aoki et al., 2003). 
b(Halliday and Fankhauser, 2003). 

morphology. This assay significantly improves on currently 
available neurite outgrowth assays. Like the method de-
scribed by Ramm et al. [24], the HCMR assay is fully auto-
mated. However, it does not require costly reagents to visu-
alize neurites and allows for direct measurement of cell 
numbers. In comparison with the method described by Price 
et al. [25], HCMR features three advantages; it 1) increased 
throughput, 2) utilizes stains which can be multiplexed with 
additional assays, and 3) avoids the use of DNA polymerase 
inhibitors which might obscure the effects of neuroactive 
drugs which are cell-cycle dependent or sensitive to 
autocrine feedback. HCMR is also an improvement over the 
methods described in the past [4, 5] by virtue of its single-
step fix/double stain which represents a truly compliant ho-
mogeneous high throughput method for neurite analysis. 
Also improved is the significant reduction of data volume 
achieved by applying 2x2 camera binning to reduce data 
acquisition and analysis times as well as the size of space 
required for data storage (Table 1). 

 The use of GFP-expressing NS-1 cells or CellMask 
Red™ as a universal fluorescent cell stain allowed us to 
visualize (Fig. 2) and quantitate (Fig. 3) neurite outgrowth 
on par with the standard immunofluorescence method which 
detects III-tubulin, a cytoskeletal protein enriched in neu-
rites [26]. However, we found HCMR more convenient be-
cause of its simplicity and potential for universal application 
in various neuronal cell lines. The most significant advan-
tage of HCMR rendered the cloning of GFP-expressing cell 
lines unnecessary, thus eliminating several weeks of cell line 
development.  

 We validated the HCMR method in two ways. First, we 
compared HCMR with the standard III-tubulin im-
munofluorescence method in dose-response assays (Figs. 
3&4) using agonist (NGF) and antagonist (SU6656) of neu-
rite outgrowth, and obtained EC50 and IC50 values that were 
comparable to those reported in the literature. Second, we 
used HCMR to screen a 1,120-member Prestwick library in 
order to identify compounds that enhance the actions of NGF 
for neurite outgrowth. We identified 30 FDA-approved drugs 
capable of inducing more than 50% neurite mass above 
background activity elicited by 2 ng/ml NGF. Four of these 
compounds have already been reported as enhancers of neu-
rite outgrowth, but the majority has not been reported to be 
involved in neurite outgrowth.  

 The known functions of these active compounds are not 
inconsistent with the biochemical mechanisms involved in 
neurite extension as most actives on the list induce stress 
and/or apoptotic responses in cultured cells, likely promoting 
stress dependent neurite outgrowth in neuronal cells at suble-
thal concentrations. Cell stressors have been widely reported 
to induce neuronal differentiation and neurite outgrowth via 
stress-activated protein kinases and p38 MAP kinase [27-
31]. Even in the case of the non-steroidal anti-inflammatory 
compound class with multiple actions and reported neurotox-
icity, there is precedent for neuroactive members, which in-
duce either neurite outgrowth or neurotoxicity, depending on 
the experimental condition. One example is staurosporine 
which promotes neurite extension in a dose-dependent man-
ner [32, 33] but also induces apoptosis [34, 35]. Corticoster-
one is another compound that either promotes or inhibits 
neurite outgrowth depending on the timing and dose admin-
istered [22]. Along these lines, it is of interest to note that we 
identified other sterols or sterol-like compounds with neurite 
outgrowth promoting properties, including two with activi-
ties greater than twice that of the NGF control. It is also not 
surprising to find a guanosine analog since NGF-induced 
neurite outgrowth involves the activation of the G proteins 
Ras and Rap1 [36]. Finally, the mechanism of stem and root 
growth induced by the neuroactive plant hormone may share 
a similar molecular mechanism to those which form exten-
sions in various animal cells, including mammalian neurons. 

 Although the active compounds were identified by im-
plementing our HCMR screen using the potentiator pharma-
cology approach, some of the actives could be functional 
agonists of neurite outgrowth and elongation acting inde-
pendently of NGF. Future studies will establish the pharma-
cological profiles of the actives as agonists or potentiators of 
neurite outgrowth upon implementation of HCMR in the 
absence of NGF. As a whole, the number and identity of the 
positive compounds reported herein clearly support HCMR 
as a rapid and viable screening method for modulators of 
neurite outgrowth.  

CONCLUSION 

 HCMR is a strategic low-cost, rapid and reliable HTS 
assay for compounds which affect neurite extension. When 
combined with mechanistic assays such as that described by 
Laketa et al. [37], and further in vitro and in vivo studies, 
HCMR presents a valuable and cost effective alternative to 
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present methods to test large amounts of compound libraries 
in a reasonable timeframe to identify compounds that sup-
port, protect, enhance, or are toxic to neuronal cell develop-
ment and differentiation.  
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