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Abstract: The phase-based frequency estimation is investigated in this paper. We first discuss the impact of noise on the 

phase unwrapping and find that when the phase difference of the adjacent samples is , namely, under the condition of 

two samples per cycle, the phase unwrapping has the best performance. An improved Kay estimator and a hybrid 

frequency estimator are then proposed according to this property. Their performance is improved by moving the 

frequency to a new one close to . The phase noise and the phase-domain SNR are analyzed and the mean square error of 

the phase-based sinusoid frequency estimators is derived. We find that those frequency estimators, which use only the 
measurement phases, are suboptimal and do not attain the Cramer-Rao lower bound (CRLB). 
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1. INTRODUCTION 

 Estimating the frequency of a single sinusoid corrupted 
by additive, white, Gaussian noise (AWGN) is an important 
problem in communications, radar and sonar signal 
processing. There are two kinds of maximum likelihood 
(ML) frequency estimators, which are operated in the 
frequency domain [1-4] and the time domain [5-11] 
respectively.

 ML estimation in frequency-domain was studied by Rife 
and Boorstyn in [2]; however, zero-padding is often required 
to obtain sufficient resolution. In such cases, the algorithm’s 
complexity can be large. In order to reduce the computation 
complexity, spectral line interpolation method was proposed 
by Rife and Vincent [3, 4]. However, the accuracy of 
interpolation algorithm is insufficient and is depend on the 
relative ubiety of the true frequency and the discrete 
frequency. 

 The time-domain estimators in [5-11] are derived from 

the ML principle, but avoid the exhaustive search in the 

frequency domain that was used in [2]. Tretter proposed 

unwrapping the signal phase and performing linear 

regression to obtain a frequency estimate [5]. This approach 

was shown to approach the CRLB at high signal-to-noise 

ratio (SNR) and its computation load is low. However, the 

phase unwrapping algorithms [12-15] cited in [5] can only 

work well at high SNR. Kay addressed the phase 

unwrapping problem by only considering the phase 

differences and presented a simple frequency estimation 

algorithm, namely, Kay’s estimator [6]. Like the ML 

estimator, this computationally simple estimator reaches the 

CRLB for SNRs above a threshold. However, at frequencies  
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approaching , the phase differences themselves are likely 

to wrap, causing large increases in mean-squared error. The 

estimator therefore performs poorly at frequencies near half 

of the sampling frequency. The work of [7] provides a 
computationally efficient estimation approach compared with 
ML estimation, via the fast Fourier transform algorithm. A 
class of smoothed central finite difference instantaneous 
frequency estimators was examined in [8]. In [9] an improved 
hybrid phase-based estimator, whose initial value was the 
Kay estimate, was proposed. Its threshold SNR is higher 
than that of Kay’s. Hua Fu proposed a sample-by-sample 
iterative ML algorithm [11], which makes use of both the 
instantaneous signal phase and the magnitude of the received 
signal samples in the estimation process. However, when the 
frequency is close to 0 and , its performance is poor, which 
is similar to Kay’s estimator. 

 If the unwrapped phase can be obtained, the estimation of 
frequency and phase are straightforward. However, some of 
the available phase unwrapping algorithms need 
comparatively high SNR [12-16] and others suffer from a 
heavy computation load [17]. 

 We investigate the phase-domain frequency estimation in 

this paper. First, the impact of noise on the phase 

unwrapping is discussed. We find that when the phase 

difference of the adjacent samples is , namely, under the 

condition of two samples per cycle, the phase unwrapping 

has the best performance. An improved Kay estimator is then 

proposed according to this property. We first move the 

frequency to half of the sampling rate before unwrapping the 

phase and then estimate the phase difference of the adjacent 

samples using the unwrapped phase. Finally, substituting the 

phase difference values into Kay’s estimator yields the 

frequency estimate. In practical applications, there may be 

no prior knowledge of the frequency and thus the phase can 

not be unwrapped under the condition of two samples per 
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cycle. In this case, we propose a hybrid frequency estimator 

(HFE), whose performance is improved by moving the 

frequency to a new one close to . The phase noise and the 

phase-domain SNR are analyzed and the variance of the 

phase-based sinusoid frequency estimators is derived. We 

find that those frequency estimators, which use only the 
measurement phases, are suboptimal and do not attain the 
CRLB. Finally, Monte Carlo simulations are performed to 

verify these conclusions. 

2. SIGNAL MODEL

 A mono-component sinusoid contaminated by AWGN 
can be modeled as 

   
r(n) = Aexp{ j

T
(n)}+ z(n),  n = 1, , N          (1) 

where  A  is the unknown amplitude, and  N  is the number of 

samples. The noise  z  is a zero-mean complex white 

Gaussian process with
  
z(n) = z

R
(n)+ jz

I
(n) . Its components 

  
z

R
(n)  and 

  
z

I
(n)  are real, uncorrelated, zero-mean Gaussian 

random variables with variance 
2

/ 2 . For a sinusoid signal, 

  T
(n)  can be expressed as 

  T
(n) = n+    (2) 

where ( < ) and  ( < ) are the 

frequency and the initial phase respectively. 

 The instantaneous phase 
  

(n)  can be obtained by taking 

arctan to (1) 

  

(n) = tg 1 Im[r(n)]

Re[r(n)]
            (3) 

where
  
Im[x]  and 

  
Re[x]  denote the imaginary part and the 

real part of  x  respectively, and 
 
tg

1  denotes the arctangent 

function. Unfortunately, one is only able to measure a 

wrapped version of the phase, rather than the true phase. 

Under the noise-free situation, the measured phase at 

instant n , 
  

(n) , is actually obtained from the true phase, 

  T
(n) , by a modulo operation as follows 

  
(n) = ((

T
(n) ))

2
             (4) 

where 
 
(())

2
 represents reduction modulo  2  onto the 

domain ( , ) . The phase unwrapping problem is then to 

obtain an estimate for the true phase,
  T

(n) , from the 

measured wrapped phase, 
  

(n) . Thus, the wrapped value 

must be unwrapped through some method to estimate
  T

(n) , 

which contains some physical quantity of interest. The phase 

unwrapping process is illustrated by a discrete time sinusoid 

next. 

 If the Nyquist theorem is met during sampling, the 

process of sampling a sinusoid with the sampling rate 
 
f

s
 can 

be illustrated in Fig. (1). 

 

Fig. (1). The sampling of a continuous sinusoid. 

 In Fig. (1), there are four samples whose phase 

measurement values, i.e. 
  
p

1
, 

  
p

2
, 

  
p

3
 and 

  
p

4
, can be 

calculated from equation (4). Since 
  
p

1
, 
  
p

2
 and 

  
p

3
 are in the 

same period, the relationship 

  
p

1
< p

2
< p

3
             (5) 

holds. While the measurement phases of P3 and P4 satisfy 

  
p

4
< p

3
.             (6) 

 Although the true phase of P4 is actually larger than that 

of P3, the modulo  2  operation during the argument 

calculation causes that 
  
p

4
 is smaller than

  
p

3
. The phase 

order relations of P3 and P4 can be recovered by adding 

multiple of  2  to
  
p

4
. Assume that P1, P2 and P3 are in the 

  
(l +1)th  period and P4 is in the 

  
(l + 2)th  period. Their true 

phases, respectively, are 

  
2 l + p

1
,2 l + p

2
,2 l + p

3
,2 (l +1)+ p

4
.         (7) 

 The period number they are in can be determined by the 

phase measurement values of the adjacent samples. Thus the 

true phase,
  T

(t) , can be recovered. In the noise-free cases, 

  T
(n)  can be recovered perfectly. However, when the noise 

is considered, the phase order relations of the adjacent 

samples may be reversed and then 
  T

(n)  can not be 

reconstructed correctly. In the following section, the impact 

of noise on the phase unwrapping process is discussed and 

an improved phase unwrapping algorithm is presented, 

which can work well at comparatively low SNR. 

3. THE PHASE UNWRAPPING ON NOISE 

 Tretter [5] pointed out that when the SNR is higher than 

5 dB, 
  
r(t)  can be approximately expressed as 

  
r(n) = Aexp{ j[

T
(n)+ (n)]} .          (8) 

 Furthermore if 
  
z(n)  is a complex AGWN, 

  
(n)  will be 

a real Gaussian noise. The approximation of (8) requires 
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high-enough SNR. In this paper, we discuss more general 

cases. Let = , then the probability density function 

(pdf) of  is given by [18 (Ch 4),19,20] 

  

f ( / ) =
1

2
e

2

2 +
2

cos( )

2
e

2 sin2

2 1+ erf
cos( )

2
 (9) 

where  = A / . The error function is defined by 

  

erf (x) =
2

e
z

2 /2
dz

0

x

.         (10) 

 Equation (4) can be rewritten as 

  
(n) =

T
(n) k

n
2          (11) 

where 
   
k

n
(k

n
)  is the period number of the sample at 

instant  n . The phase difference between adjacent samples is 

  
(n) =

T
(n) (k

n
k

n 1
)2         (12) 

where
  T

(n) =
T

(n) 
T

(n 1) , 

 
(1) = (1) ,

  T
(1) =

T
(1) ,

  
k

0
= 0  and 

  
k

1
= 1 . When 

  T
(n)  and 

  T
(n 1)  are in the same period, 

  
(n) > 0 . 

However when they are in the adjacent period, 
  n

< 0  

(Under the condition of uniform sampling and the Nyquist 

theorem being met,
  T

(n) . Since
  
k

n
k

n 1
= 1 , the 

inequality 
  

(n) =
T

(n) 2 < 0  holds). Thus the true 

phase can be recovered according to the phase difference 

between adjacent samples. The true phase at the instant  n  is 

  

T
(n) = (n) + k

n
2 ,  

k
n

= k
n 1

,  if  (n) 0

k
n

= k
n 1

+ 1,  if  (n) < 0
.      (13) 

 In the noise cases, (4) can be rewritten as 

  
(n) = ((

T
(n) + (n)))

2
       (14a) 

or 

  
(n) = [

T
(n) + (n)] k

n
2 .       (14b) 

 The pdf of 
  

(n)  is (9). The phase difference of the 

adjacent samples is 

  
(n) =

T
(n) (k

n
k

n 1
)2 + (n)        (15) 

where 
  

(n) = (n) (n 1)  and
 

(1) = (1) . 

 When 
  T

(n)  and 
  T

(n 1)  are in the same cycle, 

  
k

n
k

n 1
= 0  and

  T
(n) (0, ] , then (15) is reduced to 

  
(n) =

T
(n) + (n) .          (16) 

 

when
  

(n) >
T

(n) , 
  

(n) > 0 and the correct 
  T

(n)  

can be obtained from (13). When
  

(n) <
T

(n) , 

  
(n) < 0 . 

  T
(n)  obtained from (13) will be wrong. Since 

  
(n)  and 

  
(n 1)  are mutually independent, the pdf of 

  
(n)  can be written as 

  
f ( y) = f ( y + x) f (x) dx         (17) 

where
  
f (x) = f ( / ) . Then the error probability of phase 

unwrapping can be defined as 

  
P

w
= f ( y) dy

2

T
(n)

= f ( y + x) f (x) dx dy
2

T
(n)

     (18) 

where 
  

= max( y, )  and
  
= min( y, ) . In order 

to attain the minimum error probability, 
  T

(n)  should be 

as small as possible, namely, 
  T

(n)  should be as large as 

possible. On the other hand, 
  T

(n) (0, ] . Thus the phase 

unwrapping using (13) has the best performance 

when
  T

(n) = . When 
  T

(n)  and 
  T

(n 1)  are in 

different cycles, the same conclusion can be drawn. Fig. (2) 

shows the error probability of phase unwrapping when SNR 

is from 0 dB to 10 dB and the frequencies are ,  2 / 3  and 

 2 / 5  respectively. The error probabilities calculated from 

(18) are A, C and E, while B, D and F are the results of 

Monte-Carlo simulations. The number of simulation runs is 
set to 10 000 000 for each case. We see that the simulation 
results are identical with the theoretical values. 

 

Fig. (2). The error probability of phase unwrapping. 

 From just analysis, we can conclude that when the true 

phase is recovered through phase unwrapping and the phase 

difference 
  T

(n)  is in interval
 
[0, ] , the larger  

 

 

the
  T

(n) , the better the noise-immune performance will 

be. When
  T

(n) = , namely, two samples per cycle, the 

best performance is achieved. 
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4. THE APPLICATION OF PHASE UNWRAPPING TO 
FREQUENCY ESTIMATION 

 The estimation of the frequency of a single complex 
sinusoid in AWGN is a classical problem in signal 
processing. Kay’s estimator, which was proposed by Steven 
Kay [6], can approach the CRLB for moderately high SNR’s 
and has been widely applied in many fields. Kay’s estimator 
is given by 

  

f
c
= w

i
i=1

N 1

r*(i)r(i +1)           (19) 

where  x  denotes the phase of  x , and 
 
w

i
 are the weights 

of Kay’s window defined by 

  

w
i
=

3N / 2

N
2

1
1

i N / 2 1( )
N / 2

2

.        (20)

 When the SNR is below 8 dB, Kay’s estimator degrades 
rapidly. This is because the later three items of the first-order 
autocorrelation of signal, which appears as 

  

r
*(i)r(i +1) = s

*(i)s(i +1)+

s
*(i)z(i +1)+ s(i +1)z

*(i)+ z
*(i)z(i +1)

        (21) 

are noise terms, thus the  2  ambiguity is likely to appear 

when calculating the argument of 
  
r

*(i)r(i +1)  and the 

frequency estimate 
  
f

c
 obtained from (19) will have a 

comparatively large error. If the phase difference is 

calculated from the unwrapped phase, Kay’s estimator can 

be improved. The improved frequency estimator has the 

form 

  

f
c
= w

i
i=1

N 1

I
(i +1)

I
(i) .        (22) 

 In some applications, such as frequency tracking, a prior 

knowledge of frequency is available. In this case, the 

frequency of the signal can be shifted to half of the sampling 

rate first and then the phase unwrapping is performed. 

Assuming 
 

 is the initial frequency, the frequency shift 

value is 

  shift
= .          (23) 

 In phase domain, frequency shift can be replaced by 

phase shift. According to the principal value
  

(n) , the 

wrapped phase after frequency shifting is given by 

  
(n) = (( (n)+ n

shift
))

2
.        (24)

 Appling (13) to 
  

(n)  yields the instantaneous phase 

  I
(n)  (In noise cases, we can only obtain the noised phase 

rather than the true phase 
  T

(n)  so that the subscript  T  is 

replaced by  I .), the final frequency estimate is given by 

  

= w
i

i=1

N 1

I
(i +1)

I
(i)

shift
.        (25) 

 For convenience we call (25) as IKay. 

 In practical applications, the frequency is commonly 

unknown. In this case, the phase can not be unwrapped under 

the condition of two samples per cycle. Next, we present a 

hybrid frequency estimator, whose performance is improved 

by moving the frequency to a new one close to . 

 Firstly, frequency shift is performed to the signal 

received, and the shift values are  / 2 ,  and  3 / 2  

respectively. The wrapped phases after frequency shifting 

are given by 

  1
(n) = (( (n)+ n / 2))

2
         (26) 

  2
(n) = (( (n)+ n ))

2
         (27) 

  3
(n) = (( (n)+ 3n / 2))

2
.        (28) 

 The corresponding frequencies to
  1

(n) , 
  2

(n)  and 

  3
(n)  are 

 1
(
 1

= (( + / 2))
2

), 
 2

(
 2

= (( + ))
2

) 

and 
 3

(
 3

= (( + 3 / 2))
2

) respectively. Unwrapping 

  
(n) , 

  1
(n) , 

  2
(n)  and 

  3
(n)  yield 

  I
(n) , 

  I1
(n) , 

  I 2
(n)  

and 
  I 3

(n) . If there is no error during phase unwrapping, 

  Ii
(n) (  i = 0,1,2,3

  I 0
(n) =

I
(n) ) will be noise-

contaminated straight lines, i.e. 
 i

n+ (
 0

= ). 

Otherwise, the unwrapped phase 
  Ii

(n)  will have a phase 

jump, namely, the line 
  Ii

(n)  will have an inflection point at 

the error position. In a word, the linearity of 
  Ii

(n)  is related 

to the performance of phase unwrapping. As we know, the 

linearity can be measured by the variance of linear 

regression. Consequently, a suboptimal frequency estimator 

can be obtained: the frequency 
  i

 is estimated by 

performing Tretter’s estimator (linear regression) to 
  Ii

(n)  

and the variances of fitting are calculated at the same time. 

The optimum frequency estimate is the one whose 

corresponding fitting variance is minimal. Since
 

[ , ) , 

the frequency estimates
  i

 should be wrapped into 
 
[ , )  

after subtracting the frequency shift value from 
  i

. Thus the 

relationships between the estimate 
 

 and 
 i

 are 

 
  

= ((
0
))

2
          (29) 

   

=
((

1
))

2
/ 2,  if  

1
> 3 / 2

1
/ 2,  if  

1
3 / 2

        (30)

  
=

2
           (31)

   

=
3

+ / 2,  if  
3

< / 2

3
3 / 2,  if  

3
/ 2

.        (32) 

 Next we demonstrate this process with an example for 
clarity. In this example, the frequency  is set to 0.5 
and  N = 11 . The estimates are 

 0
= 1.8651 , 

 1
= 2.1222 , 
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 2
= 3.6929  and 

 3
= 4.2927 , and the fitting variances are 

 
Var

0
= 1.5795 , 

 
Var

1
= 0.4773 , 

 
Var

2
= 0.4773  and 

 
Var

3
= 2.7948  

respectively. The minimum variance is  0.4773  
(
 
Var

1
= Var

2
= 0.4773 ). Thus substituting 

 1
 into (30) or 

substituting 
 2

 into (31) yields the desired estimate, i.e. 
 

. 

 
Var

1
 being equal to 

 
Var

2
 implies that no error occurs during 

the unwrapping of 
  1

(n)  and 
  2

(n)  so that the frequency 
estimates obtained from them will be the same. 

 If  is close to ± , the estimate obtained from the 

suboptimum estimator may still be ambiguous, e.g. when  

is close to , 
 

 may be a value close to . While for  

close to , 
 

 may be close to . To solve frequency 

ambiguity, we need to know the rough range of the true 

frequency, which can be determined by the spectral 

interpolation scheme [21] given by 

   

=
2

N
k

0
+ r

R(k
0
+ r)

R(k
0
) + R(k

0
+ r)

2

 (33) 

where 
  
R(K )  is the power spectrum of 

  
r(n)  and 

  
K

0
 is the 

index of the largest peak. When
  
X (k

0
+1) X (k

0
1) ,   r = 1 , 

while for 
  
X (k

0
+1) > X (k

0
1) ,   r = 1 . The final frequency 

estimate of HFE is given by 

   

=

+ 2 ,  if   < 0.95   and   > 0

2 ,  if   > 0.95   and   < 0

,  else

.       (34)

 In Fig. (3) the block diagram shows the scheme of the 
HFE estimator. 

where PU denotes the phase unwrapping unit, and the 

decision conditions, i.e. con1 - con6 respectively denote 

  
if  

1
> 3 / 2 , 

  
 if  

3
< / 2 , 

   
if   | |>

3

4
, 

  
if   > 0.95 , 

   
if   < 0 , and 

   
if   > 0 . 

5. PERFORMANCE ANALYSIS 

 Kay [6] and Tretter [5] pointed out that at moderately 

high SNR Kay’s estimator and Tretter’s estimator can attain 

the CRLB on variance, which is deduced using 

approximation. Then we have a question herein: can these 

two estimators indeed attain the CRLB at high-enough SNR? 

Hua Fu [11] indicated that those estimators using only the 
measurement phases would be suboptimal. He presented a 

recursive ML estimator which makes use of both the 

measurement phases and the measurement magnitudes. For a 

sine wave with  = 0.5 , and   N = 11 , and SNR=12 dB, the 

root mean square error (RMSE) of Kay’s estimator is 

0.01724, while for HuaFu’s estimator, the RMSE is 0.01699. 

The results are the product of a Monte-Carlo simulation of 

100 000 runs and the CRLB is 0.01687. From the results we 

can see that Kay’s estimator does not attain the CRLB, while 

HuaFu’s estimator is more close to it. Since both Kay’s 

estimator and Tretter’s estimator are not maximum 

likelihood in a real sense, what are the true MSEs of these 

two estimators? Next we analyze the phase noise and the 

phase SNR, and derive the MSE of frequency estimators 

which only utilize the phase measurements. 

 The difference of the unwrapped phase is given by 

  i
=

I
(i +1)

I
(i) = + (i +1) (i)        (35) 

where 
   i = 1, , N 1 . Equation (35) indicates that the 

problem now is to estimate the mean, , in noise. The 

process is actually a moving average with coefficients 1 and 

- 1. The minimum variance unbiased estimator for the linear 

model of (35) is found by minimizing 

   
J = ( I)T

C
1( I)          (36) 

where
   

= [
1
,

2
, ,

N 1
]

T
, and 

    
I = [1,1, ,1]

T
, and  C  

is the 
  
(N 1) (N 1)  covariance matrix of . The 

solution to the problem is 

   

=
I

T
C

1

I
T
C

1
I

.           (37) 

 The variance of this estimator is 

   
Var( ) =

1

I
T
C

1
I

.         (38) 

 

Fig. (3). Scheme for HFE estimator. 
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 Since 
 i

 is a real moving average process with 

coefficients 
  
b

0
= 1  and 

  
b

1
= 1 , the covariance matrix has 

the form [6] 

   

C =

2

2

  2    1      0      0             0

1      2    1      0             0

                           

  0      0           0     1       2

         (39) 

where 
 

2
 is the variance of phase noise. 

 In the following section, we investigate the variance of 

phase noise and the phase-domain SNR. In phase domain, 

the signal component of interest is the true phase
  T

(n) , 

which is contaminated by noise. Tretter [5] proved that for 

large SNR, the additive noise can be converted into an 

equivalent additive phase noise. We do not use approximate 

processing herein, but consider more general cases. The 

phase-domain signal can be modeled as 

  
p(n) =

T
(n)+ (n)          (40) 

where 
  
p(n)  and 

  T
(n)  are equivalent to  and  in (9) 

respectively. Thus 
 

2
= Var[ ] = Var[ ] . The phase-

domain SNR is then defined by 

  
SNR

p
= 1/

2
.          (41) 

 Since
  
E[ ] = 0 , we have 

  
Var[ ] = 2 f ( / ) d .        (42) 

 Because the close form of 
 
Var[ ]  is difficult to obtain, 

the numerical calculation function of MATLAB is utilized to 

evaluate
 
Var[ ] , namely, 

 

2
. Fig. (4) indicates the 

comparison of SNRp (dashed line) and the time-domain SNR 

(solid line). We can see that SNRp is larger than SNR and the 

difference between them is varying with SNR. Fig. (5) 

shows this difference per signal-to-noise ratio, starting from 

-10 to 20 dB in steps of 0.1 dB. As can be observed from the 

plot, when SNR<1 dB, SNRp-SNR increases gradually. 

While the difference approaches 3 dB when SNR   1 dB, 

which is identical with the Tretter’s approximation. He 

proved the phase noise variance is 
 

2
= 1/ (2SNR)  [5] at 

high SNR, namely, SNRp is approximately equal to 2SNR, or 

3 dB higher than SNR. 

 As we known, the autocorrelation calculation of the noise 
signal will incur SNR loss. Next we analyze the SNR after 
autocorrelation. Recall the first-order autocorrelation of 
signal 

  

r
*(i)r(i +1) = s

*(i)s(i +1)+

s
*(i)w(i +1)+ s(i +1)w

*(i)+ w
*(i)w(i +1)

.        (43) 

 The signal terms is 

  
s*(i)s(i +1) = A2e

j2 f
c
T

         (44) 

and the noise terms are 

  
w = s

*(i)w(i +1)+ s(i +1)w
*(i)+ w

*(i)w(i +1) .      (45) 

 

Fig. (4). The relationship between the phase-domain SNR and the 

time-domain SNR. 

 

Fig. (5). The difference between the phase-domain SNR and the 

time-domain SNR. 

 The mean and variance of  w  are 0 and   2A
2 2

+
4  

respectively. Thus the SNR after autocorrelation will be 

  

SNR
c
=

A
4

2A
2 2

+
4
= SNR

1

2+1/ SNR
.       (46) 

 As can be seen from (46), the SNR decreases after 

autocorrelation. At high SNR (
  SNR 1 ), the SNR loss is 

about 3 dB. The loss is increasing gradually with the 

decreasing of SNR. For example, 
  
SNR

c
 is -4.7 dB when 

SNR is 0 dB. Recall Kay’s estimator, the first-order 

autocorrelation in (19) will cause at least 3 dB loss in time 
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domain. However, its performance approaches the CRLB 

when the SNR is higher than the threshold SNR and does not 

decrease 3 dB. Now this phenomenon can easily be 

explained according to the analysis of phase SNR. 

 Substituting 
 

2
 into the covariance matrix (39) and 

substituting (39) into (38) yield the variance of IKay and 

HFE 

  

Var( ) =
6 2

N (N
2 1)

.         (47) 

 Note that the variance is obtained under the assumption 
that no error occurs duration phase unwrapping. At low 
SNR, the error probability of phase unwrapping is 
comparatively high so that the actual MSEs are worse than 
(47). However, Ikay and HFE can attain (47) at high SNR. 

 Kay pointed out that at moderately SNR Kay’s estimator 
attains the CRLB. The simulation shows, however, even 
when the SNR is up to 20 dB, it can still not attain the 
CRLB. The MSE of Kay’s estimator was also given by 
[22,23], yet these two bounds are only valid at high SNR. As 
a matter of fact, the MSE of Kay’s estimator are derived 
from (4) in [6], which is identical with (22) of our paper, so 
that the bound for Kay’s estimator should be (47). The 
simulations in the next section verify this conclusion. 

6. SIMULATION RESULTS 

 This section presents the simulation results to illustrate 
the behavior of the variances of the classical ML estimator 
given in [2] for locating the peak of a periodogram, the IKay 
estimator (25), the HFE estimator, Kay’s estimator [6], the 
bound given by (47), the CRLB as a function of the various 
parameters. To ensure the accuracy, the number of Monte-
Carlo simulation runs is set to 10

6
. For convenience, the 

results are provided with the inverse mean square error 
(IMSE), which is defined by -10 log10(MSE) dB. The 
variances of IKay and HFE and the CRLB are respectively 
given by the inverse variance (IVar, IVar = - 10  log10 
(Var) dB) and the inverse CRLB (ICRLB, ICRLB = - 10  
log10 (CRLB) dB) as well. 

 Figs. (6-8) gives the performance comparison of four 

estimators for the frequency. The IVar and the ICRLB are 

also plotted for the sake of comparison. The actual frequency 

values to be estimated are  0.5 , 0 and  0.25  respectively; 

 is assumed to be a uniformly distributed random phase; 

the number of samples  N  is equal to 11. Notice that  

when  = 0 , the curves of IKay and Kay are overlapped. We 
define the threshold SNR of an estimator as the value of 
SNR at which its inverse variance curve dips by 1 dB from 
the ICRLB curve, as is common in the literature. The 
simulation results show that the threshold SNR for ML 
estimator is about 3 dB, while those for IKay’s estimator and 
HFE estimator are 7 dB and 8dB respectively. For Kay’s 

estimator, the threshold SNRs are 7 dB, 9.5 dB and 8.5 dB 

for  = 0.5 ,  = 0  and  = 0.25 . At SNRs lower than 

the threshold SNR, the performance of HFE decreases faster 

than that of IKay. From the simulation results we can see 

that IKay has a better performance than Kay’s estimator and 

HFE, but is outperformed by ML estimator. 

 

Fig. (6). Performance comparison of four estimators for the 

frequency , with 
 = 0.5 , 

  N = 11.  

 

Fig. (7). Performance comparison of four estimators for the 

frequency , with 
 = 0 , 

  N = 11.  

 The performance of Kay’s estimator is dependent on the 

frequency to be estimated. When  = 0 , the performance is 

the best, and worse for  = 0.25 , and the worst for 

 = 0.5 . Fig. (9) shows the variation of the MSEs of HFE 

and Kay’s estimator when the frequency is changing starting 

from  to . We can see that HFE is stable over the whole 

frequency range, while for Kay’s estimator, it suffers from 

significant performance degradation when the frequency is 

close to ± . 

 Figs. (10-12) are detailed zooms of Figs. (6-8) 

over 8 dB SNR 10 dB . We see that when the SNR is 

increasing, Kay’s estimator, IKay and HFE are close to the 

IVar gradually, yet keep a certain distance between them and 
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the ICRLB. Kay said that when the SNR is high-enough, the 

variance of Kay’s estimator is equal to the CRLB. Some 

other literatures also presented that Kay’s estimator can 

attain the CRLB when the SNR is higher than the threshold 

SNR. Well then can it indeed attain the CRLB at high-

enough SNR? Table 1 shows the performance of Kay’s 

estimator and HFE over  11 dB SNR 20 dB . The IVar and 

the ICRLB is also listed for comparison. The results show 

that Kay’s estimator can not attain the CRLB. Hua Fu [11] 

indicated that Kay’s estimator is not a maximum likelihood 

method in a real sense, since it only makes use of the 

measurement phases, yet discards the measurement 

magnitudes information. From the simulation results, his 

conclusion is verified. As a matter of fact, the MSE of Kay’s 

estimator are derived from (4) in [6], which is identical with 

(22) in this paper, so that the bound for Kay’s estimator 

should be (47). Furthermore, we can conclude that the lower 

bound of those estimators using only the measurement 

phases is (47), not the CRLB. 

 

Fig. (8). Performance comparison of four estimators for the 

frequency , with 
 = 0.25 , 

  N = 11.  

 

Fig. (9). Impact of the actual frequency on Kay’s estimator and 

HFE. 

 

Fig. (10). Zoom of Fig.  (6) over  8 dB SNR 10 dB . 

 

Fig. (11). Zoom of Fig. (7) over  8 dB SNR 10 dB . 

7. CONCLUSION 

 The instantaneous phase of the signal received can be 

obtained by a simple phase unwrapping algorithm and on 

this basis we propose two frequency estimators, i.e. IKay and 

HFE, whose performances are better than that of Kay’s 

estimator. The phase noise variance and the phase-domain 

SNR are analyzed and the theoretical analysis shows that the 

phase-domain SNR is larger than the time-domain SNR. 

When SNR < 1 dB, SNRp-SNR increases gradually. While 

the difference approaches 3 dB when SNR   1 dB. The 

mean square error of the frequency estimators based on 

phase measurements is derived. In general, we can conclude 

that IKay and HFE is better than Kay’s estimator and their 

threshold SNRs decrease for about 1-2 dB; HFE is stable 

over the whole frequency range, while Kay’s estimator 
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suffers from a significant performance degradation when the 

frequency is close to ± ; the lower bound of those 

estimators using only the measurement phases is (47), yet 

can not attain the CRLB. 

 

Fig. (12). Zoom of Fig. (8) over  8 dB SNR 10 dB . 
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Table 1. Performance Comparison of Kay’s Estimator and HFE, with  = 0 and N = 11 

 

 11 dB 12 dB 13 dB 14 dB 15 dB 16 dB 17 dB 18 dB 19 dB 20 dB 

Kay 34.2184 35.2738 36.3135 37.2771 38.3314 39.3286 40.3922 41.3902 42.3956 43.4002 

HFE 34.2184 35.2738 36.3135 37.2771 38.3314 39.3286 40.3922 41.3902 42.3956 43.4002 

IVar 34.2331 35.2761 36.3087 37.3337 38.3530 39.3681 40.3799 41.3892 42.3965 43.4023 

ICRLB 34.4242 35.4242 36.4242 37.4242 38.4242 39.4242 40.4242 41.4242 42.4242 43.4242 


