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Abstract: In this article we present two numerical models for solving transient heat conduction problems. One is based on 

dual reciprocity method and Trefftz method (dubbed DRM-Trefftz), and the other is based on dual reciprocity method and 

fundamental solution (dubbed DRM-MFS). A time stepping method is used in handling the time variable to convert the 

problem into a set of inhomogeneous modified Helmholtz equations. The solution of the modified Helmholtz equation is 

divided into two parts, i.e. the particular solution and the homogeneous solution. While the particular solution is solved by 

DRM in which the source term is approximated by radial basis functions (RBF), the homogeneous solution is obtained by 

using MFS or Trefftz method. Two types of bases functions, Trefftz solution and Fundamental solution are used to 

approximate the homogeneous solution. The proposed two meshless methods require only discrete nodes constructed on 

domain and boundary. Finally, the parameters that influence the performance of the proposed method are assessed 

through several numerical examples. The results are presented for illustrating the accuracy and efficacy of the proposed 

numerical models. 
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1. INTRODUCTION 

 During the past decades, lots of new advanced materials 
and technologies have been developed and used in aerospace 
technology and engineering, such as functionally graded 
materials [1] (FGM) and shaped memory alloy (SMAs), 
which are used as thermal barrier coating in high-
temperature turbine engine (see patent [2, 3]) and telescopic 
wing system (see patent [4, 5]), respectively. Since the 
material like FGM and SMA are always working under 
tough temperature environment in aerospace, so it is 
necessary to know the thermal properties of these materials 
and thermal performance of the corresponding structures. 
Therefore, transient heat conduction analysis plays an 
important role in many fields of space technology and 
engineering. 

 On the other hand, various numerical models were 
developed for analyzing transient heat conduction problems 
[6-11] during the past years, such as Finite Element Method 
(FEM), Finite Difference Method (FDM) and Boundary 
Element Method (BEM). Among the above methods, FDM 
and FEM critically depend on the quality of mesh; however, 
generating a good quality of mesh for complicated geometry 
can be time-consuming. BEM involves only discretization of 
the boundaries which is an important advantage over FEM 
and FDM. However, the classical use of BEM for transient 
fields [12], based on discretization in time, usually results in 
domain integrals which may increase computing time and 
even cause some numerical problems and make BEM  
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relatively inefficient compared to FEM and FDM. The Dual 
Reciprocity Method [13] (DRM) offers a solution method to 
avoid domain integration and hence became very popular 
recently. In particular, the dual reciprocity boundary element 
method (DRBEM), which transforms domain integrals to the 
boundary integrals by combining radial basis functions and 
conventional BEM, has wide applications in practical 
engineering. Applications of this approach to transient heat 
conduction problems can be found in [10, 14-16]. The 
multiple reciprocity boundary element method (MRBEM) 
has been emerging as a promising method for handling 
domain integrals [17]. However, DRBEM and MRBEM 
require more sophisticated mathematical procedures and the 
EEM itself involves further numerical integrations with a 
singular integral. 

 Alternatively, an attractive option is the meshless 
discretization approach which has received considerable 
attention by mathematicians and engineers in recent years. 
Meshless methods only use a number of nodes scattered 
within the problem domain and on the boundary. Among the 
existing meshless methods, the techniques most commonly 
used are the method of fundamental solutions (MFS) [18-21] 
and methods based on the radial basis functions (RBF) [22-
24]. The classical MFS is based on the approximation of the 
solution of a Boundary Value Problem (BVP) by a linear 
combination of fundamental solutions to the corresponding 
differential operator. The boundary conditions are then fitted 
by solving the linear system formed using a number of a 
collocation points. The singularities are avoided by the use 
of virtual boundaries outside the problem domain. The MFS 
is also known as the superposition method [25] and charge 
simulation method [26]. However, MFS has its limitation in 
that it can only solve homogeneous problems. The 
combination of MFS and RBF enables one to extend MFS to 
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non-homogeneous problems and various types of time-
dependent problems [11, 27]. 

 In contrast to the MFS which is based on the fundamental 
solution, the Trefftz method is formulated using the family 
of T-complete functions which are homogeneous solutions 
for the governing equation. The Trefftz method was initiated 
in 1926 [28]. Since then, it has been studied by many 
researchers (Cheung et al. [29, 30], Zielinski [31], Qin [32, 
33], Kita [34]). Unlike in the method of fundamental 
solution which needs source points to be placed outside the 
domain in order to avoid singularity, T-complete functions 
are non-singularity inside and on the boundary of the given 
region. 

 Motivated by some recent substantial advances on DRM, 
Trefftz and MFS, we propose DRM-Trefftz and DRM-MFS 
models for analysing transient heat conduction problems in 
this paper. First, the time stepping method is used in 
handling the time variable of the heat conduction process 
and then the system is replaced by a set of inhomogeneous 
modified Helmholtz equations. The solution of the modified 
Helmholtz equation can be divided into two parts, i.e. the 
particular solution and the homogeneous solution. The 
particular solution is solved by DRM in which the source 
term is approximated by radial basis functions (RBF), while, 
both the Trefftz method and MFS are employed to construct 
the homogeneous solution. The paper is organized as 
follows. The DRM-Trefftz and DRM-MFS models are 
introduced in Section 2, followed by numerical validations in 
terms of some 2D transient heat conduction problems in 
Section 3, and finally, some concluding remarks are 
presented based on the reported results in Section 4. 

2. NUMERICAL METHOD AND ALGORITHMS 

2.1. Basic Formulations of Transient Heat Conduction 

 Consider a two-dimensional heat conduction equation 

which models an unsteady temperature distribution in a solid 

(domain ). This problem is governed by the differential 

equation: 

  
k 2u( X ,t)+Q( X ,t) = c u( X ,t) / t         (1) 

 With the boundary conditions: 

• Dirichlet/necessary condition 

  
u X ,t( ) = u X ,t( )                              X

u
         (2) 

• Newman/nature condition 

  
q X ,t( ) = q X ,t( )                              X

q
         (3) 

• convective condition 

  
q X ,t( ) = h

e
u X ,t( ) u                X

c
         (4) 

And the initial condition 

  
u X ,0( ) = u

0
                                    X          (5) 

where 
  
u( X ,t) is the temperature function,  k is the specified 

thermal conductivity, 
  

2
=

2
x

2
+

2
y

2
is the two-

dimensional operator,  is the mass density,  c  is the 

specific heat and the overhead bar designates the imposed 

quantities. 
 
q  represents the boundary heat flux defined as 

  
q = k u / n  and  n  is the unit outward normal to the 

boundary . Furthermore, 
  
u

0
 is the initial temperature, 

 
h

e
 

is the heat transfer coefficient and 
 
u is the environmental 

temperature. For a well-posed problem, we have 

 
=

u q c
. 

 For convenience, boundary conditions (2)-(4) are 
expressed in a general form as 

  
B

1
u X ,t( ) + B

2
q X ,t( ) = B

3
X ,t( )           (6) 

where 
  
B

1
, 

  
B

2
, and 

  
B

3
 are known coefficients and can be 

written respectively as 

  

B
1
= 1,     B

2
= 0,     B

3
= u          on 

u

B
1
= 0,    B

2
= 1,      B

3
= q          on 

q

B
1
= h

e
,   B

2
= 1,   B

3
= h

e
u

e
      on 

c

         (7) 

2.2. Time-Stepping Scheme 

 In the literature there are different approaches to handle 
time variable, two of which are: (1) Laplace transform; (2) 
finite differencing in time. Since numerical inversion of the 
Laplace transform is often ill-posed, here we apply the finite 
difference scheme to handle the time variable. For a typical 
time interval [t

n
, t

n+1
]  [0,T], u(X, t), its derivative with 

respect to time variable t and Q (X, t) are approximated as 
[35]: 

  

u X ,t( ) = u
n+1

X( ) + 1( )un
X( )

u X ,t( )
t

=
u

n+1( X ) u
n

X( )

Q X ,t( ) = Q
n+1

X( ) + 1( )Qn
X( )

         (8) 

where the superscripts  n  and   n+1  refer to subsequent time 

instances and   = t
n+1

t
n  is the time step size.  ( 0 1 ) 

is a real parameter that determines if the method is explicit 

( = 0 ), implicit ( = 1 ) or a linear combination of both 

types [36]. The special choice of  = 1/ 2  is known as the 

Crank Nicolson scheme in the literature. 

 It is easily verified that the conditions which prevent 

oscillations in the explicit case are exactly the same as the 

commonly cited sufficient conditions which ensure that it is 

stable. Furthermore, even though a Crank Nicolson approach 

is unconditionally stable, it permits the development of 

spurious oscillations unless the time step size is no more than 

twice that required for an explicit method to be stable. 

Although an implicit scheme is only first-order accurate in 

time, it is proved that the Partial differential Equation (PDE) 

can be solved accurately using the implicit scheme [37]. 

Hence, we use  = 1  in our analysis. 

 Substituting Eq. (8) into Eqs. (1) and (6) and rearranging 

it yields the following modified Helmholtz-type equation 
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that has to be solved at each time step   t
n+1

 for the unknown 

  
u

n+1( X ) : 

  

2un+1( X )
c

k
un+1( X ) =

c

k
un ( X )

1

k
Qn ( X )         (9) 

  
B

1
u

n+1
X( ) + B

2
q

n+1
X( ) = B

3

n+1
X( )        (10) 

 Note that the right-hand side of Eq. (9) is well defined in 

terms of the approximate solution  u
n

 calculated on the 

previous time step  t = t
n

. To start the procedure we take 

  
u X ,0( ) = u

0
, the initial condition of the transient problem. 

 For simplicity, the single step formula Eq. (9) can be 
written as 

  
( 2 2 )u( X ) = f ( X )          (11) 

where 

 

=
c

k
           (12) 

  
f ( X ) =

c

k
un ( X )

Qn ( X )

k
         (13) 

 Eq. (11) is a sequence of inhomogeneous modified 
Helmholtz equation, the solution of which is discussed in the 
next section. 

2.3. Implementation of the Proposed Meshless Method 

 Due to linear property of Eq. (11), its solution can be 

expressed as a summation of a particular solution 
 
u

p
 and a 

homogeneous solution 
 
u

h
, that is: 

 
u = u

p
+ u

h
           (14) 

where 
 
u

p
 satisfies the inhomogenous equation 

  
( 2 2 )u

p
( X ) = f ( X )     X          (15) 

but does not necessarily satisfy the boundary conditions (2)-

(4), and 
 
u

h
 satisfies:  

  
( 2 2 )u

h
( X ) = 0   X           (16) 

  

u
h
( X ,t) = u ( X ,t) u

p
( X ,t)                                           X

u

q
h
( X ,t) = q( X ,t) q

p
( X ,t)                                         X

q

h u
h
( X ,t) q

h
( X ,t) = h u h u

p
( X ,t)+ q

p
( X ,t)   X

c

    (17) 

 Similar to the treatment of Eq. (6), Eq. (17) can be 
written in a general form: 

  
B

1
u

h
X( ) + B

2
q

h
X( ) = B

3
X( )           (18) 

 

 

2.3.1. Dual Reciprocity Method (DRM) for Particular 

Solution 

 The particular solution 
 
u

p
 can be obtained by DRM. To 

do this, the right-hand side term of Eq. (15) is approximated 

by RBF [38], yielding 

  

f X( ) = i i
X( )

i=1

N
I

                X        (19) 

where 
 
N

I
 is the number of interpolation points in the 

domain under consideration. Here, 
 

i
X( ) = r( ) = X X

i( )  

denotes radial basis functions with the reference point 
 
X

i
 

and 
 i

 are interpolating coefficients to be determined. 

 Simultaneously, the particular solution 
 
u

p
 is similarly 

expressed as 

  

u
p

X( ) = i i
X( )

i=1

N
I

         (20) 

where 
 i

 represent corresponding approximated particular 

solutions which satisfy the following differential equations: 

  
( 2 2 )

i
=

i
           (21) 

noting the relation between the particular solution 
 
u

p
 and 

function 
  
f ( X )  in Eq. (15). 

 By enforcing Eq. (20) to satisfy Eq. (15) at all nodes, we 

can obtain a set of simultaneous equations to uniquely 

determine the unknown coefficients 
 i

. In this procedure, 

we need to evaluate the approximate particular solutions in 

terms of the RBF . The standard approach is that  is first 

selected, and then the corresponding approximate particular 

solutions are determined by solving Eq. (21) analytically. 

For the Laplace operator, can be obtained by repeated 

integration, but for the Helmholtz-type operator, this has 

proven difficult [24, 39]. A significant result for Helmholtz-

type operator was given by Chen and Rashed where analytic 

formulas were given for  when  as a Thin Plate Spline 

(TPS) [40]: 

  
= r

2
ln r           (22) 

   

(r) =
4

4

4 ln r

4

r
2 ln r

2

4K
0
( r)
4

               r 0

(r) =
4

4
+

4
4
+

4
4

ln(
2

)                                 r = 0

    (23) 

where 
 

0.5772156649015328  is Euler’s constant. 
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 Another scheme for obtaining approximate particular 

solutions is a reverse approach [36, 37]. Here,  is first 

chosen directly and Eq. (22) is used to evaluate . For 

example, the particular solutions  are directly chosen as 

follows [22]: 

   
(r) =

r
2

4
+

r
3

9
           (24) 

and the corresponding  is obtained as 

   
(r) = 1+ r

2 (
r

2

4
+

r
3

9
)           (25) 

 It is difficult to prove mathematically under what 
conditions this approach is reliable, although it seems to 
work well so far for many problems [41-43] 

 An additional polynomial term 
 
p  is required to assure 

nonsingularity of the interpolation matrix if the RBF is 

conditionally positive definite such as TPS [44, 45]. And 

also, to achieve higher convergence rates for 
  
f ( X ) , the 

higher order splines are considered [46]. For example, 

  
= r

2n
ln r            n 1,  in R

2
          (26) 

 Then 

  

f X( ) = i i

[n] X( )
i=1

N
I

+P
n

          (27) 

where 
 
P

n
 is a polynomial of total degree  n  and let 

  
{b

j
}

j=1

l
n  

be a basis for 
 
P

n
 (

  

l
n
=

n+ d

  d
 is the dimension of 

 
P

n
, and 

d=2 for a 2 dimension problem). The corresponding 

boundary conditions are given by 

  
i

i=1

N
I

b
l
(P

l
) = 0,      1 l l

n
        (28) 

 Since the inhomogeneous term 
  
f ( X )  in Eq. (11) is a 

known function depending on the temperature field  u
n
, the 

coefficients 
 i

 can be determined by solving Eq. (11) and 

Eq. (28). Then the particular solution can be obtained from 

Eq. (20). 

 The next step is to solve homogeneous solution 
 
u

h
. Here 

we consider two typical methods — Trefftz method and 

MFS, which are based on Trefftz solution and fundamental 

solution, respectively. The details are follows in the next 

section. 

2.3.2. Trefftz Function for Homogeneous Solution 

 Introducing polar coordinates 
  
(r, )  with   r = 0  at the 

centroid of , it is known that the set 

  
N ={I

n
( r)cos n }

n=0
{I

n
( r)sin n }

n=1
       (29) 

are T-complete solutions of the modified Helmholtz 

equation, where 
 
I

n
is the modified Bessel function of first 

kind with order  n . 

 Hence, the homogeneous solution to (16)-(17) is 
approximated as 

  

u
h

X( ) = c
j
N

j
X( )

j=1

m

           (30) 

where 
 
c

j
are the coefficients to be determined and  m  is its 

number of components. The terms 
  
N

j
( X ) = N (r) = N X X

j( )  

are the T-complete solutions of the modified Helmholtz 

operator
 
( 2 ) , and 

  
{X

j
}

j=1

N
S  are collocation points placed 

on the physical boundary of the solution domain. As an 

illustration, the internal function 
 
N

j
 in Eq. (30) can be given 

in the form 

   
N

1
= I

0
( r), N

2
= I

1
( r)cos , N

3
= I

1
( r)sin , ,       (31) 

 So, Eq. (30) can be written as 

  

u
h

X( ) =
n
I

n
( r)cos n

n=0

k

  +
n
I

n
( r)sin n

n=1

k

      (32) 

where   m = 2k +1 . Noted that 
 
u

h
 in Eq. (30) and (32) 

automatically satisfies the given differential equation (16), 

all we need to do is to enforce 
 
u

h
 to satisfy the modified 

boundary conditions (17) as 
 
u

p
 has already been calculated 

separately. To do this, collocation points 
  
{X

j
}

j=1

N
S  are placed 

on the physical boundary to fit the boundary condition (18). 

It leads to a system of linear algebraic equations in matrix 

form: 

  
[A]

N
s

m
{c}

m 1
={b}

N
S

1
         (33) 

with 

   
{c}={

0
,

1
,

k
, 

1
…

k
} , 

   
{b}={b

1
 b

2
…b

N
S

}       (34) 

 If the number of components equals to the number of 

collocation points on the physical boundary 
  
(m = N

S
) , this 

leads to properly determined equations. Alternatively, in 

case the number of components is smaller than the number 

of collocation points 
  
(m = N

S
) , this results in over-

determined equations. The least square method can be used 

to solve the over-determined equations. Once 
  
{c}is obtained, 

 
u

h
 can be computed at any location in the domain using Eq. 

(30). 

2.3.3. MFS for Homogeneous Solution 

 In the implementation of MFS, the homogeneous 
solution is approximated in a standard collocation fashion 

  

u
h

X( ) = j
u

j

* X( )
j=1

N
S

           (35) 
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where 
 j

are the coefficients to be determined. The terms 

  
u

j

*( X ) = u
*(r) = u

*
X X

j( )  are the fundamental solutions 

of the modified Helmholtz operator 
 
( 2 ) . Here the 

source points 
  
{X

j
}

j=1

N
S  are placed outside the solution 

domain. 

 Typically, for a two-dimensional problem, the 
fundamental solution is 

  
u

j

*( X ) =
1

2
K

0
( r)         (36) 

where 
  
K

0
 is the modified Bessel function of the second kind 

with order zero. 

 For the same reason, 
 
u

h
 in Eq. (30) automatically 

satisfies the given differential equation (16), we need to 

enforce 
 
u

h
 to satisfy the modified boundary conditions (18) 

as we did in Trefftz method. But unlike the Trefftz method, 

MFS needs source points placed outside the solution domain 

to avoid singularity. In addition, the same number 

collocation points on the physical boundary are chosen to fit 

the boundary condition (18). As before, it leads to a system 

of linear algebraic equations in matrix form: 

  
[A]

N
S

N
S

{ }
N

S
1
={b}

N
S

1
         (37) 

 With 

   
{ }={

1
 

2
…

N
S

} , 
   
{b}={b

1
 b

2
…b

N
S

}        (38) 

 Once 
 
{ } is obtained, 

 
u

h
 can be computed at any 

location in the domain using Eq. (35). 

 Additionally, the generation of source points outside the 
domain is a curious problem, which affects the accuracy and 
stability. Generally, the accuracy of the approximation 
improves as the distance between the virtual and physical 
boundaries increase. At the same time, the MFS equations 
can become highly ill-conditioned at this circumstance [38]. 
At present, there is no uniform approach to generate these 
source points properly. In our work, a strategy is employed 
[18]: 

 
Y

j
= X

j
+ X

j
X

c( )          (39) 

where 
 
X

j
 are boundary nodes, 

 
X

c
 is the geometric center 

of the domain and  is a dimensionless parameter which is 

arbitrarily chosen as 1.2 for the outer boundary. 

2.3.4. The Construction of the Solution System 

 Based on above operations, the complete solution 
 
u X( )  

for the modified Helmholtz equation can be written as 

  

u X( ) = i i
X( )

i=1

N
I

+ c
j
N

j
X( )

j=1

m

             X       (40) 

 For the DRM-Trefftz method, and 

   

u x( ) = i i
x( )

i=1

N
I

+
j
u

j

*
x( )

j=1

N
S

             X        (41) 

 For the DRM-MFS method. 

 Furthermore, the normal heat flux can be obtained as 

  

q X( ) =
u( X )

n
=

i

i
X( )

ni=1

N
I

c
j

N
j

X( )
nj=1

m

  X (42) 

 For the DRM-Trefftz method, and 

  

q X( ) =
u( X )

n
=

i

i
X( )

ni=1

N
I

j

u
j

*
X( )

nj=1

N
S

 X  (43) 

 For the DRM-MFS method. Above is the basic idea of 
the proposed methods, we will give some numerical 
examples in the following section. 

3. NUMERICAL EXAMPLES 

 In order to demonstrate the efficiency and accuracy of the 

proposed meshless method and the selected RBF and virtual 

boundary, two benchmark numerical examples of transient 

heat conduction problems are considered for which 

corresponding exact solutions are known and can be used for 

verification. The domain in these two examples is a  3 3  

square. In the computation, 
  

c = 1,k = 1.25,Q = 0  are 

assumed. The third example is more complicated with non-

smooth boundary. 

 In addition, to provide a quantitative understanding of the 

results, the average relative error on a variable 
 
f  is 

introduced as 

  

Arerr f( ) =
f

numerical
f

exact( )
i

2

i=1

N

f
exact( )

i

2

i=1

N
        (44) 

where  N  is the number of test points and 
  
( f ) i is an 

arbitrary field function, such as a temperature at point i. 

 Example 1: Consider a classic heat diffusion problem 

which has been studied using the finite element method by 

Bruch and Zyvoloski [7], BEM with time-dependent 

fundamental solutions by Brebbia and Wroble [8], DRBEM 

by Partridge [13] and Trefftz finite element method by 

Jirousek and Qin [9]. The initial temperature of the whole 

domain is 30
o 

and cooled by the application of a thermal 

shock (  u = 0  all over the boundary), the geometry and 

boundary conditions of the problem are shown in Fig. (1). 

  
u(0, y,t) = u(x,0,t) = u(3, y,t) = u(x,3,t) = 0,

   
u

0
(x, y) = 30  

 The analytical solution of this problem is 

  

u(x, y,t) = A
n

j=0n=0

sin
n x

3
sin

j x

3
exp[

k 2 (n2
+ j2 )t

32
]  

where 
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A
n
= 4 30

[( 1)n 1][( 1) j 1]

nj
2

 

 

Fig. (1). Geometry of square domain and boundary conditions for 

example 1. 

 In order to investigate the effect of the component 

number  m  in Eq. (30), the number of components is chosen 

as 10, 20, 30 and 40, respectively, and 40 collocation points 

in the calculation. It can be seen from Fig. (2) that the results 

gradually converge to the exact values as the number of 

components (m) increases. This can be explained by that the 

least square method can achieve better numerical accuracy in 

solving the over-determined equations when the number of 

unknowns is close to the number of equations. But, from Fig. 

(2) we also observe that a larger  m  leads to a larger 

condition number of matrix A, which is not beneficial to 

some complex problem. So, the optimal value of  m should 

be found by numerical experimentation. The value of  m is 

taken to be the same as the number of collocation points on 

the boundary in the following numerical simulation. 

 Table 1 presents the results obtained by DRM-Trefftz 

and DRM-MFS and other solutions, obtained with the same 

value of time step ( = 0.05 ). For the sake of comparison, 

the same space discretizaion as in Ref. [13] is employed. It 

should be mentioned that the difference between BEM1 and 

BEM2 in Table 1 is as follows [8]: with BEM1, internal cells 

were employed in order to account for the initial conditions 

at the beginning of each time step, while for BEM2, the 

solution process always restarted at the initial time and 

domain discretization was avoided. It can be seen clearly 

from Table 1 that the results obtained by proposed meshless 

methods (DRM-Trefftz and DRM-MFS) agree well with the 

exact solution and appear to be more accurate than the 

results obtained from other methods. 

Fig. (2). Effect of various component number to numerical 

accuracy and condition number of matrix A. 

 The error in the meshless methods can be split into two 

parts: one is due to approximating homogeneous solutions 

and the other is due to approximating particular solutions. 

One phenomenon that should be noticed is that the two 

meshless methods we proposed converge to the same value. 

Since the same RBF is used to approximate particular 

solutions for both DRM-Trefftz and DRM-MFS, it indicates 

that Trefftz bases and MFS make the same contribution to 

the error of the homogeneous part. That means, using Trefftz 

bases and fundamental solution to approximate 

homogeneous solutions can achieve the same accuracy. So, 

DRM plays a very important role in the convergent 

behaviour of the meshless methods. In order to evaluate the 

efficiency of DRM, we employ different RBF (standard 

method and reverse method) in DRM for assessment. 

Moreover, for standard approach, splines with different order 

are considered. In Table 2,  Si  (  i = 1 4 ) denote the results 

gained by using splines 
  

= r
2i

ln r  in Eq. (19) and without 

additional polynomial term (  = 0.05 ). For comparing 

purpose,  PSi  (  i = 1 4 ) denote the results gained by using 

Eq. (27) with additional polynomial terms 
 
P

i
. 

 The numerical results in Table 2 show that the use of 

higher-order RBF interpolation functions does not improve 

computing accuracy in transient problems. A previous work 

[46] showed that more accurate results can be obtained by 

using higher order polyharmonic splines for elliptic 

boundary value problems, but from the above results we can 

see limited improvement for time-dependent problems, 

presumably because the dominant error was caused by the 

Table 1. Comparison of Results at t = 1.2 

 

Point x y 
DRM- 

Trefftz 

DRM- 

MFS 

BEM1 

[8] 

BEM2 

[8] 

FEM 

[7] 

DRBEM 

[13] 

Trefftz  

FEM [9] 
Exact 

1 2.4 1.5 1.0263 1.0263 1.114 1.122 1.139 1.099 1.103 1.065 

2 2.4 2.4 0.5985 0.5985 0.657 0.663 0.670 0.645 0.660 0.626 

3 1.8 1.5 1.6868 1.6868 1.798 1.809 1.843 1.784 1.797 1.723 

4 1.8 1.8 1.6022 1.6022 1.713 1.721 1.753 1.695 1.715 1.639 

5 1.5 1.5 1.7760 1.7760 1.887 1.902 1.938 1.877 1.894 1.812 
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time-stepping scheme. Moreover, the higher-order 

polyharmonic splines result in worse conditioning of the 

linear system associated with the homogeneous solution. 

Therefore, care must be taken in using higher-order RBFs. It 

can be seen from the results that when the order  i  is even 

(  i = 2,4 ), adding additional polynomial terms can increase 

the accuracy, but when the order  i is odd (  i = 1,3,5 ), the 

results are opposite. The reverse method is more accurate 

than the standard method except for   i = 1 (S1, PS1). 

Moreover, the reverse method can save a lot of computing 

time without calculating modified Bessel functions which is 

quite complex and really time consuming. Therefore, the 

reverse method is employed in the following computation. 

 Fig. (3) shows the absolute error of temperature for two 
different time steps. It can be seen that the smaller the time 
step is, the greater is the accuracy of the results obtained. But 
more computational time will be required when a smaller 
time step is employed. Additionally, further reduction in the 
time step does not reduce the error [47]. 

 

Fig. (3). Effect of time step on absolute error of temperature. 

 Example 2: The second example differs from the 
previous one only by the boundary conditions, which is 
shown in Fig. (4). 

  
u(x,0,t) = u(3, y,t) = u(x,3,t) = 0, u(0, y,t) / x = 0   

and 
  
u

0
(x, y) = 30  

 The analytical solution of this problem is 

  

u(x, y,t) = B
n

j=0n=0

sin
(2n 1) x

2 3
sin

j y

3
exp[

k 2 ((n 0.5)2
+ j2 )t

32
]  

where 

  

B
n
= 8 30 ( 1)n+2 ( 1) j 1

j
2 (2n 1)

 

 

Fig. (4). Geometry of square domain and boundary conditions for 

example 2. 

 Table 3 presents the results obtained by DRM-Trefftz 

and DRM-MFS and comparison is made with other 

solutions, such as FEM and Trefftz FEM, obtained with the 

same time step value (  = 0.05 ). As expected, there is 

almost no difference among the two meshless methods and 

their results agree well with the exact solutions. Again, the 

proposed method can achieve more accurate results than 

those from other numerical methods. 

 Example 3: The heat conduction problems in 

engineering or space technology are often complicated 

because of the complex geometry. In order to test the method 

for a domain with non-smooth boundary we consider a L-

shaped domain (see Fig. 5). 80 source points are placed 

outside the domain, the same number of collocation points 

on the boundary and 261 domain interpolation points are 

employed in the domain for RBF-MFS method (see Fig. 6). 

In the following iterative procedure, t=1 and iterative 

number N=50, and  = 0.02  are used. The analytic solutions 

are the function of time and position of the points: 

  
u(x,t) = cos(3x

1
)sinh(2x

2
)exp( 5t) [48]. Fig. (7) shows the 

temperature history at the points of interest A and B, 

respectively. It can be seen that the solutions obtained by the 

two numerical methods agree well with each other and 

converge to the analytical solution as time increases. 

 In addition, to investigate the effect of the number of 

collocation points on convergent performance of the model, 

different numbers of collocation points on the boundary (20, 

40, 60, 80) are employed in the calculation. From previous 

analysis, we know that both DRM-MFS and DRM-Trefftz 

can converge to the analytical solution, so the calculation is 

just performed using RBF-MFS only. The convergent 

Table 2. Comparison of Results By Different RBF in DRM (t = 1.2) 

 

Point S1 S2 S3 S4 S5 PS1 PS2 PS3 PS4 PS5 Reverse Method Exact 

1 1.048 1.119 1.118 1.204 1.021 1.034 1.104 1.137 1.157 1.158 1.026 1.065 

2 0.611 0.658 0.649 0.720 0.560 0.599 0.642 0.668 0.681 0.680 0.599 0.626 

3 1.721 1.817 1.820 1.933 1.686 1.703 1.797 1.841 1.871 1.874 1.687 1.723 

4 1.635 1.728 1.730 1.840 1.599 1.618 1.708 1.751 1.779 1.782 1.602 1.639 

5 1.812 1.910 1.914 2.031 1.777 1.793 1.890 1.936 1.967 1.971 1.776 1.812 
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numerical results obtained at   t = 1s  are compared with the 

analytical solution. Table 4 shows the average relative error 

for the whole domain. It can be seen that more collocation 

points are used, more accurate results can be achieved. 

 

Fig. (5). Domain’s geometry with locations of the points of interest. 

 

Fig. (6). Demonstration of source points, collocation and 

interpolation points. 

 

 

(a) 

 

(b) 

 

Fig. (7). (a) Temperature history at point A (b) Temperature history 

at point B. 

Table 4. Effect of the Number of Collocation Points on 

Accuracy 

 

Number of  

Collocation Points 

20 40 60 80 

Arerr 2.18E-1 1.21E-1 1.19E-1 1.18E-1 

Table 3. Comparison of Results from Various Methods at t = 1.2 

 

Point x y DRM-Trefftz DRM-MFS FEM [7] Trefftz FEM [9] Exact 

1 1.5 0.3 1.3780 1.3779 1.418 1.393 1.377 

2 1.5 0.6 2.6179 2.6719 2.697 2.615 2.618 

3 1.5 0.9 3.6002 3.6001 3.713 3.649 3.604 

4 1.5 1.2 4.2332 4.2332 4.364 4.298 4.237 

5 1.5 1.5 4.4519 4.4519 4.589 4.524 4.455 
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CONCLUSION 

 Two new meshless approaches for solving transient heat 
conduction problems are developed. Both of the algorithms 
use DRM to solve the particular solution. The homogeneous 
solution is approximated by linear combination of Trefftz 
bases in DRM-Trefftz while by linear combination of 
fundamental solution in DRM-MFS. It should be mentioned 
that using Trefftz bases and fundamental solution can 
achieve the same accuracy for solving homogeneous 
solution. Among the two methods, DRM-Trefftz is easier to 
implement since it is non-singular, so it is unnecessary to 
place source points outside the domain for avoiding 
singularity which does occur in DRM-MFS. Finally, 
numerical results show clearly that the methods presented 
can achieve very high accuracy when compared to other 
conventional numerical methods. Furthermore, the methods 
described in this paper can easily be extended to three- 
dimensional problems and nonlinear problems. This work is 
underway. 

NOTATIONS 

c = Specific heat (J/kg/ ºC) 

h  = Conventional coefficient (W/m
2
/ ºC) 

k = Thermal conductivity (W/m/ ºC) 

Q = Spatial heating (W/m
3
) 

q = Normal heat flux (W/m
2
) 

t = Time (s) 

u = Temperature (ºC) 

u0 = Initial temperature (ºC) 

u  = Environmental temperature (ºC) 

N1 = Number of interpolation points in the domain 

Ns = Number of source points outside the domain 

m = Number of components for T-complete solution 

GREEK SYMBOLS 

 = Frequency of the modified Helmholtz equation 

 = Interpolating coefficient defined in Eq. (19) 

 = Interpolating coefficient defined in Eq. (35) 

 = Euler’s constant 

 = Time step size 

 = Density (kg/m
3
) 

 = Temporal weighting in time-stepping method 

REFERENCES 

[1] Hidayetoglu TK. Functionally graded friction material. US Patent 
7033663, 2000. 

[2] Burris KW, Beardsley BM, Chuzhoy L. Component having a 
functionally graded material coating for improved performance. US 

Patent 6087022, 2000. 
[3] Rabiei A. Functionally graded biocompatible coating and coated 

implant. US Patent 20090304761, 2009. 
[4] Renner E. Thermal engine. US Patent 3937019, 1976. 

[5] Knowles G, Bird RW. Solid state engine with alternating motion. 
US Patent 20046834835, 2004. 

[6] Brian PLT. A finite-difference method of high-order accuracy for 

the solution of three-dimensional transient heat conduction 
problems. AIChE J 1961; 7: 367-70. 

[7] John C, Bruch J, George Z. Transient two-dimensional heat 
conduction problems solved by the finite element method. Int J 

Numer Methods Eng 1974; 8: 481-94. 
[8] Brebbia CA, Telles JCF, Wrobel LC. Boundary element 

techniques. Suhrkamp Verlag: Springer 1984. 
[9] Jirousek J, Qin QH. Application of hybrid-trefftz element approach 

to transient heat conduction analysis. Comput Struct 1996; 58: 195-
201. 

[10] Jutta B, Bia ecki RA, Günther K. Transient non-linear heat 
conduction-radiation problems - a boundary element formulation. 

Int J Numer Methods Eng 1999; 46: 1865-82. 
[11] Wang H, Qin QH, Kang YL. A meshless model for transient heat 

conduction in functionally graded materials. Comput Mech 2006; 
38: 51-60. 

[12] Mansur WJ, Brebbia CA. Formulation of the boundary element 
method for transient problems governed by the scalar wave 

equation. Appl Math Model 1982; 6: 307-311. 
[13] Partridge PW, Brebbia CA, Wrobel LC. The dual reciprocity 

boundary element method. Computational mechanics publications. 
London: Southampton and Elsevier Applied Science 1992. 

[14] Bulgakov V, Scaronarler B, Kuhn G. Iterative solution of systems 
of equations in the dual reciprocity boundary element method for 

the diffusion equation. Int J Numer Methods Eng 1998; 43: 713-32. 
[15] Singh KM, Tanaka M. Dual reciprocity boundary element analysis 

of nonlinear diffusion: Temporal discretization. Eng Anal Bound 
Elem 1999; 23: 419-33. 

[16] Bialecki RA, Jurgas P, Kuhn G. Dual reciprocity bem without 
matrix inversion for transient heat conduction. Eng Anal Bound 

Elem 2002; 26: 227-36. 
[17] Nowak AJ, Brebbia CA. The multiple-reciprocity method. A new 

approach for transforming bem domain integrals to the boundary. 
Eng Anal Bound Elem 1989; 6: 164-7. 

[18] Young DL, Jane SJ, Fan CM, Murugesan K, Tsai CC. The method 
of fundamental solutions for 2d and 3d stokes problems. J Comput 

Phys 2006; 211: 1-8. 
[19] Smyrlis YS, Karageorghis A. Some aspects of the method of 

fundamental solutions for certain harmonic problems. SIAM J Sci 
Comput 2001; 16: 341-71. 

[20] Fairweather G, Karageorghis A. The method of fundamental 
solutions for elliptic boundary value problems. Adv Comput Math 

1998; 9: 69-95. 
[21] Chen CS, Golberg MA, Hon YC. The method of fundamental 

solutions and quasi-monte-carlo method for diffusion equations. Int 
J Numer Methods Eng 1998; 43: 1421-35. 

[22] Balakrishnan K, Sureshkumar R, Ramachandran PA. An operator 
splitting-radial basis function method for the solution of transient 

nonlinear poisson problems. Comput Math Appl 2002; 43: 289-
304. 

[23] Golberg MA, Chen CS, Bowman H, Power H. Some comments on 
the use of radial basis functions in the dual reciprocity method. 

Comput Mech 1998; 21: 141-8. 
[24] Golberg M, Chen CS. The theory of radial basis functions applied 

to the bem for inhomogeneous partial differential equations. Bound 
Elem Commun 1994; 5: 57-61. 

[25] Koopmann GH, Song L, Fahnline JB. A method for computing 
acoustic fields based on the principle of wave superposition. J 

Acoust Soc Am 1989; 86: 2433-8. 
[26] Amano K. A charge simulation method for the numerical 

conformal mapping of interior, exterior and doubly-connected 
domains. J Comput Appl Math 1994; 53: 353-70. 

[27] Wang H, Qin QH, Kang YL. A new meshless method for steady-
state heat conduction problems in anisotropic and inhomogeneous 

media. Arch Appl Mech 2005; 74: 563-79. 
[28] Trefftz E. Ein gegenstuck zum ritzschen verfahren. Proceedings of 

2nd International Coneference of Applied Mechcanics, Zurich, 
Switzerland 1926; pp. 131-7. 

[29] Jin WG, Cheung YK, Zienkiewicz OC. Application of the trefftz 
method in plane elasticity problems. Int J Numer Methods Eng 

1990; 30: 1147-61. 
[30] Cheung YK, Jin WG, Zienkiewicz OC. Direct solution procedure 

for solution of harmonic problems using complete, non-singular, 
trefftz functions. Commun Appl Numer Methods 1989; 5: 159-69. 



50   Recent Patents on Space Technology, 2010, Volume 2 Qinghua Qin 

[31] Zielinski AP. On trial functions applied in the generalized trefftz 

method. Adv Eng Softw 1995; 24: 147-55. 
[32] Qin QH. Trefftz finite element method and its applications. Appl 

Mech Rev 2005; 58: 316-37. 
[33] Qin QH. Trefftz finite and boundary element method. Southamp-

ton: WIT Press 2000. 
[34] Kita E, Ikeda Y, Kamiya N. Trefftz solution for boundary value 

problem of three-dimensional poisson equation. Eng Anal Bound 
Elem 2005; 29: 383-90. 

[35] Chapko R, Kress R. Rothe's method for the heat equation and 
boundary integral equations. J Integral Equ Appl 1997; 9: 47-69. 

[36] Thomas JW. Numerical partial differential equations illustrated ed. 
USA: Springer 1995. 

[37] Zvan R, Vetzal KR, Forsyth PA. Pde methods for pricing barrier 
options. J Econ Dyn Control 2000; 24: 1563-90. 

[38] Golberg M. Recent developments in the numerical evaluation of 
particular solutions in the boundary element method. Appl Math 

Comput 1996; 75: 91-101. 
[39] Golberg M, Chen CS, Fromme J. Discrete projection methods for 

integral equations. Computational Mechanics Publications: 
Southampton 1997. 

[40] Chen CS, Rashed YF. Evaluation of thin plate spline based 
particular solutions for helmholtz-type operators for the drm. Mech 

Res Commun 1998; 25: 195-201. 

[41] Wrobel LC, DeFigueiredo DB. A dual reciprocity boundary 

element formulation for convection-diffusion problems with 
variable velocity fields. Eng Anal Bound Elem 1991; 8: 312-9. 

[42] Schclar NA. Anisotropic analysis using boundary elements (topics 
in engineering) (hardcover). UK: WIT Press 1994. 

[43] Kogl M, Gaul L. Dual reciprocity boundary element method for 
three-dimensional problems of dynamic piezoelectricity. Eng Anal 

Bound Elem 1999; 8: 312-9. 
[44] Kansa EJ. Multiquadrics--a scattered data approximation scheme 

with applications to computational fluid-dynamics--ii solutions to 
parabolic, hyperbolic and elliptic partial differential equations. 

Comput Math Appl 1990; 19: 147-61. 
[45] Zerroukat M, Power H, Chen CS. A numerical method for heat 

transfer problems using collocation and radial basis function. Int J 
Numer Methods Eng 1998; 42: 1263-78. 

[46] Muleshkov AS, Golberg MA, Chen CS. Particular solutions of 
helmholtz-type operators using higher order polyhrmonic splines. 

Comput Mech 1999; 23: 411-9. 
[47] Schaback R. Error estimates and condition numbers for radial basis 

function interpolation. Adv Comput Math 1995; 3: 251-64. 
[48] Valtchev SN. Roberty, A time-marching MFS scheme for heat 

conduction problems. Eng Anal Bound Elem 2008. 32(6): 480-93. 

 

 

Received: December 4, 2009 Revised: December 16, 2009 Accepted: January 11, 2010 

 

© Qinghua Qin; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 
 


