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Abstract: In order to improve the accuracy of anomaly detection and solve the problem of feature extraction, this paper 

proposed an anomaly detection method based on deep learning. It built a deep neural network model with multiple hidden 

layers to learn features of data. In this model, a real zero-value sparse auto-encoder (RZSAE) is proposed to achieve the 

pre-training of network. The learned features fully characterize the inherent information of the original data and improve 

data discrimination, so that the accuracy of anomaly detection is improved. This method does not require manual 

extraction of features, and the learning process is unsupervised, avoiding the difficulty of acquiring the labeled data. 

Experimental results show that this method can effectively learn the essential characteristics of the data, and anomaly 

detection methods with the learned features could significantly improve the detection rate. 
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1. INTRODUCTION 

 Intrusion detection technology [1] is to prevent or reduce the threat of cyber-attacks, under the condition that the network 
performance is not affected. It can be divided into misuse detection and anomaly detection technology. The anomaly detection 
can detect unknown attacks, so the research of that gets more attention compared to the other. At present, most anomaly 
detection methods can be summarized as the following: specific instances are represented as data samples according to the 
features (attributes) of instances, and then use the classic pattern classification algorithms such as neural network, decision tree, 
cluster analysis and Bayesian theory, support vector machine (SVM), K nearest neighbor algorithm (KNN) to classify sample 
points [2-4]. Features are the raw materials of the classification system. Good features play a very key role for the accuracy of 
the anomaly detection algorithm.  

In 2006, Geoffrey Hinton, professor of university of Toronto, and a leader in the field of machine learning, published a paper in 
science [5], which points out that the deep learning model has outstanding advantages on learning features. The features learn 
by this model can represent data with more rich information, and then improve the classification performance. Deep learning 
model [6] is to stack multiple nonlinear transformation functions, through combining low-level features to form a more abstract 
and more useful high-level features. It uses layered characteristics transform to map the samples from the original space to a 
new feature space which can facilitate the classification. So, in order to improve the accuracy of classification, we can use deep 
model to learn better and more complete features of data as the input of anomaly detection system. 

This paper proposes an anomaly detection method based on deep learning. By building deep neural network model with more 
hidden layers, the features of original data are extracted step by step from the bottom to the top. And then these features are 
used as the input to the current anomaly detection algorithm, in order to improve detection accuracy with good expression of 
original data. The whole learning process does not need any artificial feature extraction work, using the original data as input of 
the learning algorithm. And the learning process is unsupervised, so as to overcome the difficulty of acquiring labeled data. In 
this paper, two anomaly detection algorithms based on this method were given to prove the effectiveness of our method. 
Experimental results show that the features of data learning by our deep model can significantly improve the detection rate of 
original anomaly detection algorithm. 

 

2. ANOMALY DETECTION PROCESS BASED ON DEEP LEARNING 

 The anomaly detection method in this paper proposed a feature learning algorithm based on deep learning model, which 
learns the feature of the input data by unsupervised learning, and then the feature is input into the classification model to detect 
abnormal behavior. As shown in Fig. (1), this anomaly detection method includes two stages. One is the training phase for 
model, as shown in Fig. (1) (A). It includes the training for feature learning model and classification model. Data preprocessing 
in this phase is standardization and normalization of input data, and data type conversion, etc. The training process of feature 
learning model, with unlabeled data after preprocessing as input, was carried out by unsupervised method. Trained feature 
learning model can be directly applied to learn feature of new data, mapping the sample in the original space to a new feature 
space. The training process of classification model use the labeled training set to execute supervised training. The classification 
model here can be any anomaly detection algorithm that can be used for the classification, such as KNN, neural network and 
SVM, and so on [7].  



 

 

Another phase is anomaly detection shown in Fig.(1) (B). The first step in this phase is data preprocessing. And then we learn 
the feature of data for classifying, where the trained feature learning model in first stage is used. Finally, the classification is 
carried out by trained classification model with the learned data feature as input. 
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(A) Model training phase 

 

(B) Anomaly detection phase 

Fig. (1). Anomaly detection process based on deep learning. 

 

3. RESEARCH METHOD 

 It is well known that, the training of deep neural network is very difficult before 2006. The objective function, which has 
many local optimal values [5], is very hard to optimize. The initial parameter is a pivotal role for whether the network can 
achieve the optimal solution. If the initial value is not good, neural network is easy to fall into local optimum. Until 2006, 
Geoffrey Hinton put forward that the difficulty of training neural network can be effectively overcome by "layer-wise training" 
[4]. Initialize network one layer after one layer, and finally form the initial value of the entire network. This initialization will 
help the gradient descent begin at a better initial search point, so as to converge to better local optima. 

 

 



 

 

 

3.1 TRAINING PROCESS 

 The basic rule for deep neural network training is as follows: first pre-train network by an unsupervised training method (i.e., 
layer-wise training for initialization); then stack multiple layers that has been initialized to form a deep network; finally fine-
tune this pre-trained deep network to get the feature learning model. This paper follows the same principle. First, using 
unlabeled data (labeled data can also be ok), all kinds of feature learning method can be applied to parameters pre-training of 
every network layer to obtain the initial parameters of the whole deep network. Pre-training process is as follows: 

Algorithm 1: 

 

Starting from the layer 2, where i = 2 

(1) Use the feature value in layer i - 1 as the input of present layer i (the value of layer 1 is the original data) to train 

layer i, so as to learn the initial encoding parameters
( )i

W
( )i

b  of layer i. And then these parameters are applied to get 

the features in the layer i (
( )i

h ). 

(2) Input 
( )i

h  to the next layer, followed by the training of the next layer. 

Repeat (1) and (2) to train every layer, until the last layer. 
 

Layer 1 is the input of entire deep network, namely the original data. The last layer features is the output of entire feature 
learning model, and is the input of classifier. The 

( )i
W and 

( )i
b  represent weights and bias values of layer i respectively. 

Pre-training is critical to the success of deep neural network training. The network without pre-training is easy to fall into bad 
local extreme value with the increasing number of layers. Pre-training can help the network to find a good local extreme value 
point. Next, we will detail our pre-training method. 

 

 

 

3.2 AUTO-ENCODER 

 The existing pre-training methods include auto-encoder (AE), restricted Boltzmann machine (RBM), sparse coding and 
deep belief network (DBN). The pre-training method in this paper proposed based on the auto-encoder. In order to state our 
method well, we will briefly describe the auto-encoder here. Auto-encoder [8-10] consists of two parts: encoder and decoder. 

Encoder: nonlinear mapping function  maps input data (
nx R ) to the representation in hidden layer (

mh R ). The 
map is represented as follows: 

( ) ( )fh f s bx Wx= = +                                                  (1) 

                                               

The parameters contain a weight matrix of encoder with size m n  (W ), and a bias vector (
mb R ). 

Decoder: nonlinear mapping function g  reconstructs input data from the representation in hidden layer (
mh R ) to 

form 
nr R .  

( ) ( )' '

gr g s W bh h= = +                                                (2) 

 

Where 
'W  is the weight matrix of decoder with size m n , and 

' nb R  is its bias vector. 

The fs gs  are nonlinear activation functions, which usually adopt the form ( )
1

sigmoid
1 z

z
e

=
+

. 

The training of encoder is to search the parameters of network ( { }, , ', 'W b W b= ). The training objective is to 

minimize the reconstruction error on the training set (
ND ). The objective function is represented as: 

( ) ( )( )( ) 2

AE ,g
2

Nx D

ij

ij

J xL x f W= +                (3) 

 

 



 

 

 

 

The first item is reconstruction error, which usually is squared-error cost function: 

 

( )
2

,L x r x r=                                                                (4) 

 

or the cross entropy cost function  

 

( ) ( ) ( ) ( )
1

, log 1 log 1
n

j j j

j

jL x r x x rr
=

= +          (5) 

 

The second item is weighted decay, where  is weight decay parameter used to control the relative importance of the 

two items.  
When the feature in first layer is obtained by auto-encoder, it becomes the input signal of the second layer. Through 
minimizing the loss function, we will get the parameter in second layer, and then get corresponding feature in this layer, 
which is the second expression of the original input information. Through repeating the above steps, we can form a 
multi-layer network, where each layer is a different feature expression of raw input data 

 

 

3.3 THE PROPOSED PRE-TRAINING METHOD 

In this paper, a real zero-value sparse auto-encoder neural network (RZSAE) with three layers is proposed to realize 

pre-training. Each RZSAE will learn one feature expression of input data. We train this neural network to minimize the 

error between input and output, so as to realize the minimum error after data transformation.  

 

(1) Network structure  

Suppose that we have an unlabeled training set 
( ) ( ) ( ){ }1 2

, ,
N

X xx x=  of N examples, 
( )k nx R  represents a 

sample. 

 
Usually, auto-encoder neural network [8-10] is trained by unsupervised learning algorithm, which uses the back 
propagation algorithm to make the output (reconstruction of input) approach the input. The training of RZSAE in this 
paper still adopts this learning algorithm. The objective of training is setting as 

( ) ( )
( )

i i
xr x . Fig. (2) 

gives the structure of RZSAE which based on that of auto-encoder neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2), Network structure. 

 

 

Here, circle represents neurons. The neurons with “+1” is bias unit. There are three layers in the network.  They are 

the input layer on the left, the output layer on the right and the hidden layer in the middle. Let n l  denotes the number of 

layers. For example, here n l =3.  We label layer l  as lL , so layer 1L  is the input layer, and layer 
n l

L   is the output layer. 

The network has parameters 
( ) ( ) ( ) ( )2 2 3 3

( , , , )W b W b= , where 
( )l

ijW  denotes the weight associated with the connection 

between unit j in layer l  and unit i in layer 1l + . Also, 
( )l
ib  is the bias associated with unit i in layer 1l +  .  

And  
( )

( )
i

r x  is the activation value of the output layer when 
( )i

x  is given as input. In other words, it tries to learn 

an approximation to the identity function, so as to output 
( )

( )
i

r x  that is similar to input 
( )i

x . The mapping from input 

of network to the value in hidden layer is encoding input data, namely learning feature of that. The value in hidden layer 

is then transformed to the output of network is decoding process, namely the reconstruction process. Our goal is to make 

the output after reconstruction approach the original input with the reconstruction error is minimal. The encoding result 

(activation value of hidden layer) is the feature expression of the input data.  

 

(2) Cost function 

In this paper, squared-error cost function is used. In detail, for a single training example
( )i

x , we define the cost 

function with respect to that single example to be:  

( )( ) ( ) ( )
21

;
2

( )
i i i

L r xx x=                                        (6) 

 

 

 

 

 



 

 

 

This is a one-half squared-error cost function. Given a training set of m examples, we then define the overall cost 

function to be: 

( ) ( )( )

( )

n s s 1

2

1 2 1 1

n s s 1
2

2

1 2 1 1

( ) ( )

1
; L ; ( )

2

1 1
( )

2 2

l l l

l l l

k l i j

k l i j

N
k l

ji

N
k k l

ji

N

x
N

J X x W

r x W

+

= = = =

+

= = = =

= +

= +

        (7)                     

 

 

The first item in the definition of ( );J X  is an average sum-of-squares error.   is the parameters of network, 

including the weights and biases in all the layers. The second item is weight decay to decrease the magnitude of the 

weights, so as to help prevent over fitting. 

 

 

 

(3) Real zero-value sparsity  

 

 

This article adds the real zero-value sparsity to hidden layer neurons of traditional sparse auto-encoder neural 

network to form RZSAE. It makes most of hidden layer neurons are real zero-value, which is different from the 

approximate zero-value in traditional sparse auto-encoder. That makes some of hidden neurons are activated, but the 

activation of other hidden neurons equals zero, so as to make the average activation of hidden neurons in a small range. 

In this paper, the activation function of neurons is the sigmoid function. 

 

 

We use 
( ) ( )2

( )
i

jh x  to denote the activation of hidden neuron j given the input sample 
( )

x
i

. Further, the average 

activation of hidden neuron j over all the samples in training set is defined to be: 

 

 

( ) ( )2

1

( )
1 N

j j

i

i

h x
N =

=                             (8) 

Then, the sparsity penalty item which will be added into the overall cost function to be: 

 

 

 

( )
2

1

1
log 1 log

1

s

jj j=

+                  (9) 

 

 

 

Where  is a sparsity parameter, usually a small value close to zero. The sparsity penalty item makes j  close to , 

so as to make the average activation of hidden neurons small enough. 

So the overall cost function after adding sparsity penalty item is as follows: 

 

 

 



 

 

( ) ( )

( )
2

2

sparse

1

n s s 1
2

2 1 1

( )

s

1

( )1 1

2

( )
2

1
log 1

;

log
1

l l l

N
k k

l

ji

k

j j

j

j

l i

J X x x
N

r

W

=

+

= = =

=

=

+

++

                (10)                                         

 

 
The result of using this sparsity penalty item is that the activations of part of hidden neurons approximate zero-value, but 

still more than zero. In order to achieve real sparsity in hidden neurons, we set a threshold s  to the result 
( ) ( )( )2 i

jh x  

after training with sparsity penalty item. It forces the hidden neurons whose activation approximates zero-value equals to 

real zero-value. 

 

We define a threshold function to be: 

 

 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )

2

2

2

0,
( )

1,

j

i

i
j

j

i
h s

thred h
h s

<
=

x

x

x

                      (11) 

Then, the final activation of hidden neurons is: 

 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 2
( )

i i

j

i

j jh h thred h=x x x                (12) 

 

 

  

(4) Learning algorithm  

The learning algorithm is trying to find the final activation of hidden neurons (one feature expression of input) through 

searching the minimal ( );sparseJ X . In this paper, we adopt the batch gradient descent algorithm as follows: 

Algorithm 2: 

 

 

1) Compute the overall cost function ( );sparseJ X  

 

Step 1: forward propagation. Compute the activations of every layer  
( ) ( ) ( )1

  
l l l lz W a b= +                                                    (13) 

 

 

( ) ( )( )  
l l

a f z=                                                             (14) 

 
( )l

a  denotes the activation of layer l . 
( )l

z  is the net input of layer l . 

 

Step 2: compute the average activation of every hidden neuron using formula (8) 

 

Step 3: apply formula (10) to compute the overall cost function ( );sparseJ X  



 

 

 

2) Compute the gradient of ( );sparseJ X  with respect to every parameters ( ) ( );l sparseW
J X  and ( ) ( );l sparseb

J X  

3) Update all the parameters 

 
( ) ( )

( ) ( ) l

l l

sparseW
W W J=                                   (15) 

 
( ) ( )

( ) ( )  l

l l

sparseb
b b J=                                       (16) 

 

where  is learning rate. 

4) Repeat 1) - 3) until our cost function ( );sparseJ X  is small enough. 

 

5) Compute the initial activations of hidden neurons through forward propagation with the trained parameters of 

network 
6) Compute the final activation of hidden neurons according formula (12) 

 

Using this algorithm, we can obtain one feature expression of input. Then we use the algorithm 1 and algorithm 2 to form 
the feature network, which is used to get the last feature expression of input. 

 

4. EXPERIMENT 

4.1 DATASET 

In order to verify the validity of this method, this article use BCW dataset from the UCI database to do experiment. 

The dataset contains 699 samples, and every sample is 9 dimension data. There are two kinds of samples in the dataset, 

containing 458 normal data samples and 241 abnormal data. We set the first category as self-set (normal data), and the 

second category is nonself-set (abnormal data). This paper focuses on the detection rates of abnormal data (nonself-set). 

So we use the whole self-set and 100 nonself samples as the training sets, and the remaining 141 nonself samples as test 

set. 

 

4.2 THE EXPERIMENTAL SETUP 

In our experiment, the feature learning network in this paper contains two feature learning layers, one input layer and 

one output layer. The parameters of each feature learning layer were pre-trained by sparse auto-encoder neural network. 

The number of sparse auto-encoder neural network is decided according to feature learning layers’ number. So in our 

experiment two sparse coding neural networks are trained to initialize the feature learning network. The first layer of the 

first sparse coding neural networks is input layer, whose neurons number 1s  is equal to the dimension of the input data, 

in this case 
1s 9= .The neurons number of second layer (hidden layer) 

2s 20= . Finally for the output layer, the number 

of neurons in output layer is equal to the number of input layer neurons 
3 1s s 9= = . For the second sparse auto-encoder 

network, the input is the feature learned from the first sparse auto-encoder neural network (namely the value in hidden 

layer of the first network), so the number of input layer of the second network 
'

1 2s s 20= = . We set the hidden layer and 

output layer neurons are 20. Other parameters are set as  = 0.003, 3= , 0.5= , and the threshold s=0.001. This set 

of parameters is chosen because they worked well in our experiments. 

This features learned by learning model are applied to other regular anomaly detection algorithm. Here we test the 

result on KNN algorithm and multi-layer neural network (MLP) algorithm. Set the neighbor set size K = 10 for KNN 

algorithm. MLP network includes three layers, the input layer, one hidden layer and one output layer. The number of 

input layer neurons is equal to the dimension data that is 9. There are 20 hidden layer neurons, and the number of output 

layer neurons is decided by the classification number, which equals to 2 here. 

 

 

 

 

 



 

 

 

4.3 THE EXPERIMENTAL RESULTS ANALYSIS 

 All experimental results are the average of 10 times repeated tests. We compared the result of KNN algorithm with that of 
DL_KNN (KNN based on DL) method. The results are shown in Fig.(3), which show that, under different K values, almost all 
the detection rates of DL_ KNN method are higher than that of KNN algorithm, only slightly lower when K = 3 (KNN is 
83.69%, DL_KNN is 83.69%). Among them, the best detection rate of KNN method under various K values is 90.17 when K 
equals 16, while that of DL_KNN algorithm is up to 97.16% (K = 10). In addition, we found that when K approaches 200, the 
detection rate declined quickly. Because in training set the self-sample number is 100, when the training set size close to 200, 
nonself samples close to the self-samples in the collection of K neighbors. So the detection rate decline. When K = 200, KNN 
detection rate was 2.13%, almost to zero, while the DL + KNN detection rate was 13.48%. Because the KNN algorithm is 
based on K nearest neighbor to determine their own categories, so when K > 200, self-samples always more than nonself 
samples, which results that nonself samples always judge as self-samples, and accordingly the detection rate is zero. 

Fig.(4) shows the results of MLP and DL_MLP method. Through the results, we can see that, in a variety of hidden layer 

numbers, the detection rates of DL_MLP method are all higher than that of MLP method.  
All the experimental results show that, the detection rates of various detection algorithms based on deep learning have 
improved significantly. 

  

 

Fig. (3). Comparison between KNN and DL_KNN method. 

  

 

Fig. (4). Comparison between MLP and DL_MLP method. 



 

 

Through the study we found that the deep learning method is first applied to extract the features of anomaly detection 
data. This method proposed in this paper overcomes some limitations of the classical anomaly detection method. The 
main advantage of this method is that: (1) it do not need artificial feature extraction. Artificial neural network with much 
more hidden layers has outstanding advantages in terms of feature learning. It can automatically learn with full using of 
big data to get useful features; (2) the deep model transforms data from one expression to another, which implements the 
mapping of the samples from the original data space to the new feature space. This transformation keeps sufficient 
information of the original data, at the same time improve the ability to distinguish different samples, and accordingly 
improve the accuracy of anomaly detection; (3) the feature learning model is completely unsupervised training process, 
which make full use of huge amounts of unlabeled data that are easy to access, overcoming the difficulty to obtain 
labelled data. 

 

 

5. CONCLUSIONS 

Aiming at the problems of feature learning and detection accuracy in anomaly detection algorithms, this paper 

proposed a new anomaly detection algorithm which uses a feature learning model to improve the accuracy of anomaly 

detection. This method applied the deep feature learning model based on sparse auto-encoder neural network to learn the 

useful features, which fully express the data information. And these features are combined with the traditional anomaly 

detection algorithm to obtain better detection accuracy. Experimental results show that the proposed method effectively 

improves the detection accuracy. 
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