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Abstract:  We propose  a  block  image  compressive  sensing  algorithm based  on  interleaving  extraction  in  Contourlet  domain  to
improve the performance of image sparse representation and quality of reconstructed images. First,  we propose the interleaving
extraction scheme and partition an image into several sub-images using interleaving extraction. Second, we represent the sub-images
in Contourlet domain and measure Contourlet sub-band coefficient matrices using different dimensional Gaussian random matrices.
Finally,  we  rebuild  the  sub-band  coefficients  with  the  orthogonal  matching  pursuit  algorithm  and  conduct  Contourlet  inverse
transform to reconstruct the original images. Experimental results show that the subjective visual effect and peak signal to noise ratio
of the proposed algorithm are superior to those of the original compressive sensing algorithms under the same sampling rate.
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1. INTRODUCTION

In 2006, Donoho and Candès developed compressive sensing (CS) theory from signal sparse decomposition and
approximation theory. CS can reconstruct the original signal with high quality by obtaining limited measurement data,
which  provides  a  new  solution  to  image  compression  [1].  CS  achieves  original  signal  sampling  and  compression
simultaneously,  avoiding  resource  waste  of  Shannon’s  theorem  through  traditional  data  processing  method:  first
sampling and then compressing. As a result,  CS greatly reduces signal sampling frequency, signal processing time,
computational expense, and data storage cost [2].

According to CS theory, the sparse representation, measurement matrix, and reconstruction algorithm are the three
key  elements  in  reconstructing  the  original  signal  from  the  sparse  signal  with  high  probability  [3].  Currently,  the
commonly used sparse representation methods include discrete cosine transform (DCT), discrete wavelet transform
(DWT),  multi-scale  geometric  analysis,  and  redundant  dictionaries  [4].  DCT  demonstrates  poor  time-frequency
analytical performance; DWT experiences difficulty in reflecting image edge information accurately, and thus unable to
meet  the  requirement  of  image  sparse  representation.  In  2002,  Do  and  Vetterli  proposed  Contourlet  transform.
Contourlet transform can represent the anisotropic characteristics and approximate singular curve of an image with
minimal coefficients, effectively solving the sparse representation problem of high-dimensional space data. The image
representation  performance  of  Contourlet  transform  is  better  than  most  widely  used  wavelet  transform  methods,
compensating for the lack of multi-directional wavelets [5, 6].

The CS reconstruction algorithm can be divided into three categories: convex relaxation method, greedy algorithm,
and  combinational  algorithm.  Convex  relaxation  algorithms  include  basis  pursuit,  interior-point  method,  gradient
projection, and iterative threshold algorithm [7, 8]. Greedy algorithms include  matching  pursuit (MP), orthogonal  MP
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(OMP), and regularized OMP [9]. Combinational algorithms include Fourier sampling and chain tracking [10]. Among
these algorithms, greedy algorithm is the most widely used. To the best of our knowledge, most current improvements
on  CS  are  based  on  greedy  algorithm,  and  research  results  of  Contourlet  transform  applied  to  CS  have  not  been
published. Inspired by wavelet compressive sensing, we use Contourlet transform to realize the sparse representation of
images [11]. The high frequency sub-bands corresponding to Contourlet decomposition are orthogonal and exhibit good
non-correlation with the measurement matrix, further improving the accuracy of image reconstruction.

In this study, we propose a new image reconstruction algorithm based on Contourlet transform and interleaving
extraction. We also adopt the traditional OMP reconstruction algorithm. The experimental results, based on subjective
and objective evaluation indicators, confirm the advantages of our proposed algorithm.

The rest of the work is organized as follows. Section 2 introduces related work on CS theory. Section 3 describes
the proposed scheme. Section 4 analyzes the experimental results. Finally, Section 5 presents the conclusion.

2. RELATED WORK ON COMPRESSIVE SENSING

2.1. Encoding Observations and Measurements

Assuming that N × 1 signal f ϵ RN is not sparse in the time domain, the linear observation process is considered as y
= ϕ f, where ϕ is a M × N matrix (M < N). If f is sparse under a set of orthogonal bases, then according to the formula f
=  ψ  x,  where  ψ  is  the  dimension  of  N × N  orthogonal  matrix,  the  sparse  form or  approximate  sparse  form of  the
transform domain coefficient x replaces the time domain form, f and y can be expressed as follows:

(1)

In Formula (1), the CS matrix Θ = ϕψ is a M × N matrix, and the observation vector y is linearly superimposed by
the signal sparse value in Θ [12, 13]. Fig. (1) shows the basic CS encoding steps.

Fig. (1). Schematic of CS encoding.

We  denote  ϕ  as  the  measurement  matrix  and  ψ  as  the  sparse  decomposition  matrix.  The  form  of  ϕ  exists
independently of signal. f . ψ is composed of any set of orthogonal bases or compact frame. The set of orthogonal bases
decomposes signal f into a sparse form and is only related to the reconstruction of the signal.

To ensure observed signals exist in a sufficiently sparse transform domain and then obtain CS measurements, we
must  determine  a  set  of  base  vectors  representing  the  original  signal  in  sparse  form [14].  Considering  the  optimal
performance of Contourlet transform in image sparse representation, we decide to realize image sparse decomposition
in the Contourlet domain.
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According to Formula (1), the CS matrix Θ ensures that x with length N is recoverable by M (M < N) observed
values  of  y.  Cand's  and  Tao  introduced  the  concept  of  “restricted  isometry  property”  (RIP).  RIP  explains  that  to
completely reconstruct the original signal, the observations should not map two different sparse signals to the same
observation set [15].

The Gaussian measurement matrix ϕ and ψ = 1 are not correlated. Once ϕ is selected, regardless of what orthogonal
matrix ψ is, the CS matrix will be an independent, identically distributed Gaussian matrix, with a high probability of
meeting RIP [16]. As a result, we select the Gaussian random matrix as the measurement matrix.

2.2. Decoding Reconstruction

For sparse coefficient vector x, if, Θx = y then for any vector r(Θr = 0) located in empty set space N(Θ) of Θ, all will
have Θ (x + r)= y. There should be infinite numbers of solution x' that satisfies Θx' = y in Formula (1) when M < N. The
reconstruction algorithm aims to find the sparsest coefficient vector x of the signal in the solution set space H = N (Θ) +
x . We apply the optimization algorithm to find the solution that best meets sparse conditions. The lp norm of vector is
defined x as:

(2)

From the perspective of energy, l2 norm minimization finds the minimum energy solution in many possible forms of
signals. However, signal energy is spread over the entire range, which is undesirable form of reducing energy [17]. In
this study, we use l1 norm minimization to reconstruct the original signal.

Based on l1 norm minimization, the optimization equation is as follows:

(3)

It is a convex optimization problem that can accurately recover the sparse and approximate compressible signals.
The convex relaxation method solves the l1  norm minimization problem. In reconstruction, the number of observed
values of the algorithm is the least, whereas the accuracy and computational complexity are the highest. The greedy
algorithm, which is the most widely used currently, is also used to solve l1 norm minimization problem. This algorithm
is between the convex relaxation method and combinatorial algorithm in operational efficiency, demand for observation
values, and reconstruction precision [18, 19].

3. PROPOSED ALGORITHM

According to image sparse representation in Contourlet transform domain combined with blocking, we propose a
CS algorithm based on interleaving extraction in the Contourlet domain. The proposed algorithm initially decomposes
the image into several sub-images evenly by interleaving extraction. The algorithm then decomposes each sub-image by
Contourlet  transform  and  selects  Gaussian  random  matrix  as  the  measurement  matrix  to  obtain  measured  values.
Finally, the image is reconstructed by OMP. Fig. (2) shows the algorithm flow chart.

Fig. (2). Flow chart of the proposed scheme.

3.1. Block Compressive Sensing

The traditional CS method encounters several problems, such as high computational complexity, large memory size
of compression sampling operator, and long reconstruction time. Block-based compressive sampling (BCS) can achieve
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better performance compromise and is widely applied in image acquisition. The computation of BCS is significantly
less than that of traditional CS.

Consider an image l with size lr × lc of total pixels N = lr × lc, we aim to obtain M measurement values. The image is
divided into small B × B pieces in BCS. xi represents the vector form of block i. Then, the corresponding observed
value yi is expressed as

(4)

where ϕB  is a m × B2  matrix and .  For the entire image, the measurement matrix ϕ  is a block
diagonal matrix with the following form [20]:

(5)

In  BCS algorithm,  the  m × B2  matrix  ϕB  needs  to  be  stored,  whereas  the  M × N  matrix  ϕ  does  not.  When B  is
smaller, the storage space is smaller and is also achieved more quickly. By contrast, when is B larger, the reconstruction
result is better. Based on experience, B = 32 is generally taken as the size of the block.

3.2. Interleaving Extraction

The BCS algorithm can greatly reduce computations with the reduced image block. However, BCS itself has many
shortcomings. Despite a great advantage in the reconstruction speed, image quality declines [21].

The traditional block method reduces the quality of the reconstructed image to a certain extent, whereas interleaving
extraction assigns any adjacent pixels in the image to different descriptions. Given the smooth gray variation in the
adjacent pixels in natural images, each sub-image formed by interleaving extraction is of the same importance, and the
correlation between each other is strong, which can be used to describe the original image [22]. As an example, Fig. (3)
shows the 2-Extraction, 4-Description using down-sampling decimation mode.

Fig. (3). Image division by interleaving extraction.

Fig. (3) clearly shows that 2-Extraction generates a sub-image by extracting a pixel by every two rows and two
columns. By analogy, n-Extraction extracts a pixel by every n  rows and n  columns. The procedure is equivalent to
dividing the image into non-overlapping pieces of size n × n, then sequentially assigning pixels to the sub-images. As a
result,  each image is a description. Fig. (4) shows the result of interleaving extraction for the lena.bmp image. The
image has a size of 256*256. Each sub-image clearly describes the original image.
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Fig. (4). 2-Extraction, 4-Description effect of interleaving extraction.

3.3. Contourlet Transform

Contourlet  transform  is  a  multi-resolution,  localized,  and  multi-directional  real  two-dimensional  image
representation method. The support section of the base has a long strip structure. The aspect ratio of the strip structure
changes based on scale, which is similar to the shape of the contour, and has an anisotropic scale, as shown in Fig. (5).
Among Contourlet coefficients, the energy of coefficients representing image edge is more concentrated, that is, the
Contourlet transform for the curve exhibits a more sparse expression.

Fig. (5). Curve description of Contourlet transform.

Contourlet transform separately analyzes multi-scale and direction. First, multi-scale analysis is performed using
Laplacian Pyramid (LP) to identify singular points. The singular points are then synthesized by directional filter bank
(DFB)  in  the  same  direction  as  a  factor  to  capture  high  frequency  components.  Fig.  (6)  shows  the  flow  chart  of
Contourlet transform. LP also functions to avoid “leakage” of low frequency components because the directional filter
itself is unsuitable for processing the low frequency part of the image. First, the original image is decomposed by LP to
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obtain low and high frequency images at  each level.  Then,  LP decomposes the low frequency image,  and the high
frequency image is sent to DFB to obtain the sub-band information of each direction. Contourlet transform is different
from other analytical methods because it features different numbers of decomposition directions at different scales. For
example, the number of sub-bands of each level of decomposition is fixed in wavelet decomposition with only three
directional sub-bands: horizontal, vertical, and diagonal. However, in Contourlet decomposition, the number of the sub
bands in each level is exponentially two, and the number of the sub-bands varies.

Fig. (6). Basic flow of Contourlet transform.

Fig.  (7)  shows the three levels  of  Contourlet  transform decomposition.  For the original  image,  the first  layer  is
wavelet  decomposition,  obtaining  information  of  four  direction  sub-bands.  In  the  second  layer,  DFB  filters  eight
directions, obtaining information of eight direction sub-bands. In the third layer, the number of directions is sixteen,
obtaining information of 16 direction sub-bands.

Fig. (7). Three-level Contourlet transform decomposition diagram.

3.4. Algorithm Steps

The proposed algorithm includes the following steps:

Divide the original image into several sub-images by interleaving extraction.1.
Use the Contourlet transform on each sub-image to obtain the Contourlet coefficients.2.
Transpose part of the matrices whose column number is greater than the number of the rows, making the line3.
number greater than or equal to the column number of the coefficient matrices.
Select Gaussian random matrices of different dimensions to measure the signals in step (2) according to the4.
dimensions of the coefficient matrices.
Reconstruct the measured matrices using the OMP method.5.
Transpose the transposed matrices in step (3) again after reconstruction.6.
Obtain the coefficients of the reconstructed image by Contourlet inverse transform.7.
Reassign the reconstructed coefficients to each sub-image using the reverse process of interleaving extraction.8.
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4. SIMULATION RESULTS AND ANALYSIS

Numerous simulation experiments have been carried out in this study. The LP of Contourlet transform selects the
“9-7”  pyramid  filter.  The  “9-7”  filter  is  more  suitable  for  image  processing  because  of  its  linear  phase  and  the
approximately  orthogonal  characteristics.  The  “pkva”  directional  filter  is  selected  as  the  DFB  of  Contourlet.  Test
images  are  selected  from  the  standard  image  test  datasets,  and  the  size  is  512×512  pixels.  The  input  image  is
decomposed into four layers, and the numbers of the directions of each layer are 1, 4, 8, 16, adopting 2-Extraction, 4-
Description. Image reconstruction quality is evaluated by peak signal to noise ratio (PSNR). PSNR is calculated by
Formula (6). The sampling rate is 0.5. The results are the averaged values of repeated program runs.

(6)

where, , f' is the reconstructed image and f is the original image.

To verify the universal applicability of the proposed algorithm, 10 512×512 pixel images are selected for sparse
decomposition and reconstruction. Given the limited space, only partial results are shown in Fig. (8) and Table 1.
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Fig. (8). Original and reconstructed image 'Lena' with different algorithms.

Table 1. PSNR of different images reconstructed with the proposed algorithm.

Original Image Bridge.bmp Goldhill.bmp Mandrill.bmp Zelda.bmp Barbara.bmp
Wavelet Domain Algorithm 30.6173 34.6262 29.3767 32.8172 32.7396
Traditional Block Algorithm 20.9531 26.1201 19.7196 32.1931 25.8268

Proposed Algorithm 39.8333 42.5448 41.8726 44.1065 41.5119

The  above  experimental  results  demonstrate  that  the  quality  of  the  reconstructed  image  using  the  proposed
algorithm  is  significantly  better  than  that  of  traditional  OMP,  BCS_OMP  algorithms.  The  proposed  algorithm  is
applicable to images with different details. At present, the reported average PSNR of the reconstruction algorithm is
within  the  range  of  33–37  dB.  Thus,  the  proposed  algorithm  provides  better  performance.  Computational  time
complexity  and  memory  requirement  are  not  obviously  improved.

CONCLUSION

We first  introduce  the  basic  principles  of  CS theory.  Considering  the  original  CS and  BCS algorithms  and  the
characteristics of Contourlet transform coefficients of the image, we propose a new CS algorithm based on interleaving
extraction in the Contourlet domain. We perform blocking using interleaving extraction. Our blocking strategy ensures
that the complexity of the observation process does not change with the image size. The proposed algorithm is simple in
structure, easy to implement, and suitable for processing high-resolution images. We realize sparse image representation

(c) Traditional block algorithm (PSNR = 29.3363).

(d) Proposed algorithm (PSNR = 45.9431).
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by Contourlet transformation. The detailed texture information of the image is effectively reconstructed by CS image
reconstruction, relatively improving the visual effect of the image. Simulation experiments with different test images
demonstrate  that  the  objective  evaluation  index  of  PSNR  is  greatly  improved,  providing  a  new  application  for
Contourlet  transform  in  CS.
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