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Abstract: Dynamic systems are studied and modeled through the description of state changes (or trajectories). State 

changes over time constitute the activity of a dynamic system. In a component-based simulation, state changes depend on 

both computations and exchanges of information. In this paper, the activity tracking paradigm is introduced as a guide for 

modeling dynamic systems and developing corresponding efficient component-based simulations. Mechanisms and struc-

tures to track and describe activity through information are informally and formally introduced. 

INTRODUCTION 

 Currently, simulation opens new perspectives to Science. 

In contrast to the era of hand computation, today increas-

ingly the dynamics of complex systems are directly modeled 

to be simulated on digital computers. This induces a shift of 

methodology in the scientific community. Modeling theories 

are selected to fit the ability of computers to deal automati-

cally with digital information. 

 Fig. (1) is a 3D picture of a fire spreading simulation. It 

is a good introduction of what is a simulation goal in “virtual 

reality.” To achieve this goal (modeling a fire spread), con-

sider two alternative questions: (i) “You are a point in space 

at position (x,y,z), are you in fire? Will you receive heat en-

ergy?” (asking all non-burning points in space), or (ii) “You 

are a burning point in space at position (x,y,z), how will you 

propagate heat energy?” Answering to the second question 

(which is more intuitive and turns out to be more efficient) 

leads to the approach of activity tracking and specification, 

in space and time. 

 When dealing with dynamic complex systems, the scope 

is to describe activity and topology of systems. In simula-

tion, complexity of systems depends on: (i) the quantity of 

digital information to store, (ii) the quantity of digital infor-

mation to exchange, and (iii) the number of computations to 

perform. Information storage relates to memory space. In-

formation exchanges and computations relate to simulation 

activity. 

 Focusing on activity makes the simulation systems more 

efficient. Efficiency of the simulation depends first on the 

modeling efficiency. The latter necessitates using concise 

structures reusable simulation components. To be efficient 

the challenge is to benefit from component advantages while  
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reducing execution overheads induced by the communication 

between components [2, 3]. 

 Our purpose here is to introduce the activity tracking 

paradigm as an efficient and reusable top-down specification 

guide from modeling to simulation. Using this paradigm, 

models and components designed for simulation should be 

simpler, clearer and faster. 

 

Fig. (1). Screenshot of a fire spread simulation (visualization tool 
used: [1]). 

 By the word “paradigm”, we consider a set of fundamen-

tal critics, rules, analysis, thoughts and structures on which 

theories and models can be developed. Informal and formal 

notations, simple algorithms, implementation considerations 

are provided as “keys” to guide the modeler. At every step of 

the modeling process, models are incrementally designed 

through activity focusing on the relevant structure elements. 

A guide to reduce complexity from modeling and design 

points of view is provided. Computation structures of com-

mon sense are provided to map more efficiently changes of 

real systems. This new design perspective aims to be more 

generic than usual simulation world views and more abstract 

than reasoning on precise algorithm complexity. 
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 The paper is organized as follows. In section 2, concepts 

and elements of conventional world views and simulation 

time flows are abstracted and combined. In section 3, a high-

level activity tracking pattern is proposed and activity track-

ing in a distributed system example is presented. In section 

4, activity is described through mathematical structures for 

both discrete-event and discrete-time driven simulations. In 

section 5, a special case of distributed systems (spatial sys-

tems) is described through cellular models. A mathematical 

structure for cellular model specifications and implementa-

tion design issues are presented. In section 6, an example test 

bench application is presented and discussed. Finally, con-

clusion and further works are provided. 

CONVENTIONAL COMPOSITE SIMULATION 
STRATEGIES 

 A modeling and simulation life cycle is usually com-

posed of three fundamental steps: 

1. Observation and Delimitation of the System 

 For a particular problem, according to modeling objec-

tives, by experimenting (questioning) a real (or speculative 

or imaginative) system, experimental data are collected (or 

defined) within an experimental frame
1
. 

2. System Modeling 

 According to a first modeling view, a first model can be 

defined by abstracting both structure and dynamics of the 

system in attempting to meet the objectives. This model can 

be deterministic and/or stochastic, continuous and/or dis-

crete. Discrete models
2
 can then be defined hierarchically 

through many other modeling views. 

3. Implementation, Verification and Validation 

 Finally, trajectories of a discrete model (which is compo-

nent-based) are produced by simulation, i.e., the process a 

model state evolves in time through action mechanisms (the 

abstract simulators [6]). This permits the verification of the 

internal structure of the simulation system. A study of these 

results allows validating, invalidating, learning and improv-

ing the model. 

CONVENTIONAL WORLD VIEWS 

 In the modeling and simulation life cycle, the view con-

cept is fundamental for efficiency and to guide the modeler. 

A view (or a facet) corresponds to the manner the modeler 

will answer the problem and account for modeling objectives 

[5]. Usually, complexity of both structure and behavior of a 

real complex system cannot be represented faithfully by a 

computer (as a one-to-one mapping). Different models have 

to be abstracted, designed and simulated to build many vir-

tual representations, each one improving the understanding 

of the system. Notice that this multi-model conception can 

be used broadly as a modeling philosophy in whatever scien-

tific approach. The choice of one view depends on modeler’s 

                                                
1 An experimental frame describes the conditions under which the system is 

being observed or experimented. For more information on experimental 

frames [4, 5]. 
2 which can be approximations of the continuous system if this latter does 

not have analytical solutions. 

popular and scientific cultures, his knowledge level and 

modeling requirements (execution time, precision, etc.) In 

short: an objective is the question a model is developed to 

answer; a view is how to build this model (and answer). To 

reduce complexity for one modeling objective, one view can 

be further adapted or views can be combined together [7]. 

The choice of views determines both intelligibility of the 

model and simulation performance. Finally, adapting J.M. 

Legay’s thinking [8], we can say that, “it is the multiplicity 

of the point of views [and of the modeling objectives] as 

well as the confrontation of the results of the corresponding 

models, which lead to a better knowledge of the system un-

der study.” We call such an approach multi-view and multi-

objective. 

 There are three common types of discrete event simula-

tion strategies, also called world views, that are employed in 

discrete event simulation languages and packages [6, 9, 10]: 

event-scheduling, activity-scanning, and process-oriented. A 

strategy makes certain forms of model description more 

naturally expressible than others. In all of these world-views, 

an event is an instantaneous change in the state of a system at 

a particular time. Event scheduling models work with pre-

scheduling of all events and there is no provision for activat-

ing events by tests on the global state. In contrast, in the ac-

tivity scanning approach, events can be conditioned on a 

contingency test in addition to being scheduled to occur in 

time. A model is said to be active when both its scheduling 

time has occurred and its contingency test is satisfied. The 

process interaction world view is a combination of the event 

scheduling and activity scanning strategies. A detailed for-

mulation is provided in [6]. 

 In this paper, we propose an activity tracking approach 

that differs from the classical activity scanning strategy in 

fundamental way to be explained. 

SIMULATION TIME FLOWS 

 In simulation, using digital computers, a distinction is 

made between the continuous time of reality and simulation 

time. In digital simulation, the flow of time can only be rep-

resented by discrete values that can be obtained by a discre-

tization of the continuous time stream. Simulation time can 

be managed two ways [9]: by a clock or discrete-events. In a 

clock (or discrete-time) driven simulation, the simulation 

time is incremented by a constant step t, from t to t+ t. 

State changes occurring between [t, t+ t] are computed at 

t+ t. The time base is represented by integer values (or mul-

tiples thereof) and models are called discrete-time models. 

These models are very prevalent in simulation of physics-

based control systems. In a discrete-event driven simulation, 

the simulation progresses from the occurrence date of an 

event to that of another, i.e., from one discrete state change 

to another. In this case, the time base can be represented by 

real numbers but only a finite set of such values can occur in 

a finite interval of time. The models are called discrete-event 

models and have been widely used especially for advanced 

technological systems such as in manufacturing [11]. They 

include Timed Petri Nets [12], timed automata [13], and 

Discrete Event System Specification (DEVS) [6]. 
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 The advantage of discrete-event driven simulations is that 

a simulation model evolves directly from one state change to 

another. During inactivity periods, no computations are per-

formed. However, at every state change, this necessitates to 

be able to forecast the occurrence date of the next state 

change, as well as to deal with event managements in a 

scheduler. On the other hand, in a discrete-time driven simu-

lation one has to deal with the precision of the time step for 

the detection of state changes. 

 The decision to choose a simulation time management 

depends on the nature of the system and on the modeling 

objectives. For a system in which every state change occurs 

at a fixed t, discrete-events will produce simulation over-

head, and a discrete-time driven simulation will be more 

efficient. In simple words, we do not have to predict (by 

computation) what we know to happen and when. However, 

we can easily admit that in natural systems discrete-time 

evolution does not exist. Discrete-time flows only exist in a 

modeler’s mind and in industrial processes (e.g., robots) or 

after the discretization of the real and continuous time by 

humans [14]. For other systems, “while other formalisms 

allow representation of space and resources, only discrete-

event models offer the traditional ability to explicitly and 

flexibly express time and its essential constraints on complex 

adaptive systems behavior and structure” [15]. 

 Due to a long history of applications that pre-dates the 

dawn of the digital computer, discrete-time driven simula-

tions are more pervasive to discrete-event simulations. How-

ever, it is increasingly recognized that discrete-events are 

essential to take into account external events in discrete-time 

components. Moreover, there is no loss in expressiveness in 

moving to the discrete-event representation, since every dis-

crete-time state change can be considered as an internal 

event of a simulation model. 

 How to choose or to combine modeling views and time 

flows is not evident. In the next section, these concepts are 

merged through the activity tracking paradigm. 

ACTIVITY TRACKING 

 According to objectives, tools and views a modeler dis-

poses, a common activity pattern can be used and interpreted 

to model and simulate distributed interacting components. 

Activity Tracking Pattern 

 Fig. (2) depicts the activity pattern. The latter offers a 

new perspective to modelers merging the three usual world 

views (activity- event- and process-oriented strategies). 

Marks are added to track propagating activity in a compo-

nent hierarchy. Every usual view is underlined. At every 

simulation time step, an active set of components is deter-

mined. 

 Using the activity pattern, components can entirely be 

modeled and simulated through activity tracking (informa-

tion exchanges and computations), in two steps: 

• First, the propagation activity is tracked. Information 

exchanged between components is routed and com-

puted. The current active set is scanned. Events are 

routed and output transitions are computed. Final re-

ceivers can be found in the hierarchy using a recur-

sive routing function (for more information, see [2]). 

The current (ordered) active set is updated including 

imminent components for external transitions. Order 

of the active set depends on a tie-breaking function of 

imminent components (for more information: [6]). 

• Second, according to current states and to new infor-

mation inputs, new states are computed. External and 

internal transitions (due to external and internal 

events) of active components are computed. Compo-

nents changing state significantly are marked to be 

added to the new (ordered) active set. In a discrete-

event driven simulation, the new active set corre-

sponds to a scheduler and active components are 

marked to execute further their internal transition 

function (corresponding to an internal event occur-

rence). In this case, the current active (ordered) set is 

a sub-set of the scheduler, which corresponds to com-

ponents active at the current simulation time. 

 Initialize  
the active set 

Time increment  

Scan all components  of the current active (ordered) set 
Compute and route output external events 

Add marks to receivers  

simulation 

End of 

END 

No 

Scan all components  of the current active (ordered) set 
Compute new state s 

Conditionally  add marks  
 

Update the current (ordered) active set  

Update the new  (ordered) active set  

 

Fig. (2). Activity tracking pattern. 

Activity Tracking in Distributed Systems 

 When distributed components exchange information to-

gether, the determination of active components depends on 

the simulation time management. According to the latter 

different mechanisms need to be specified to represent the 

behavior to be simulated. The following simple example is 

used as a generic case for discussing activity tracking 

through component modularity and simulation time man-

agement. Fig. (3) describes the behavior to simulate and then 

three possible different solutions. The behavior to simulate 

consists of activating right neighbors of a simple 1-D cellular 

automata (CA) at different times, reproducing tokens. Cross-

ing times are represented under arrows. 
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 CA [16] is amongst the most well-known paradigms for 

specifying spatially distributed systems. Standard CA consist 

of an infinite lattice of discrete identical sites, each site tak-

ing on a finite selection of, for instance, integer values. Val-

ues of sites evolve synchronously in discrete time steps ac-

cording to deterministic rules that specify the value of each 

site in terms of the values of neighboring sites. This basic 

definition of CA (infinite lattice, neighborhood and rule uni-

formity of cells, closure of the system to external events, 

discrete states of cells, etc.) is too limited to specify compli-

cated cellular models. Extensions of basic cellular automata 

for tracking activity (using a discrete-time or a discrete-event 

time base) are considered here after. 

 Using a discrete-time management, as the smallest time 

precision is 0.1, the whole discrete-time step has to be: 

t=0.1. A first simulation of this behavior can be achieved 

using basic cellular automata. The latter computes every 

component’s state, at every time step, using directly the state 

of influencing left neighboring components. Local transition 

functions consist of: 

If (influencingComponentState==‘getaToken’ && 

   simulationTimeRequired==true) Then 

   myComponentState newState //get a token 

endIf 

 At every time step the whole local transition functions of 

components are activated, in an inefficient way. Such basic 

cellular automata do not allow focusing computations only 

on active components. 

 Still using a discrete-time base, another solution can be 

defined to track activity in space. Basic CA use a simple 

reductionistic view defining exclusively the global behavior 

as the behavior of the parts (cells). To track activity, a global 

state transition function is added. An activity state (‘inac-

tive’, ‘active’ and ‘activeTesting’) is added to the cells. The 

activity state ‘activeTesting’ is used to track new activated 

components. Then, as a generic global transition function, a 

simple algorithm can be used to determine new active testing 

components: 

If (scannedComponentActivityState==‘active 

   Testing’ && influencedComponent==  

   ‘inactive’  

   && scannedComponentActivityCondition==  

   true) Then 

   scannedComponentActivityState ‘active’  

   influencedComponentActivity 

   State ‘activeTesting’ 

endIf 

 Here the scannedComponentActivityCondi-

tion corresponds to the test: If (simulation-

TimeRequired==true). Once this test is satisfied, the 

local transition function is computed only for active and test-

ing components. Only components in the activity state ‘ac-

tive testing’ are tested. Obviously, another test can be added 

to turn active components in inactive ones: 

If (scannedComponentActivityState==‘active’  

   && scannedComponentActivityCondition==  

   false) Then 

   scannedComponentActivityState ‘inactive’ 

endIf 

 Here, this activity end condition will result in an active 

set of only one active testing component. By the way, exter-

nal events can change states of components through ports (cf. 

Fig. (3), external event on the last right cell). 

 Using a discrete-event time base, components are 

autonomous components communicating through ports and 

external events, scheduling internal events. Cells receiving 

the required type of external event (token reception) achieve 

the following algorithm through a local transition function: 

If (inputEventType==true && myActivity 

   State==’inactive’) Then 

   //new token 

   schedule (internalEvent(delay)) 

   myActivityState ‘active’ 

   myComponentState newState //get a token 

endIf 

 When the component is reactivated by the internal event 

reception (after the delay required), the following algorithm 

is executed locally: 

If (myActivityState==‘active’) Then 

   send (externalEvent) 

   myActivityState ‘inactive’ 

endIf 

  

Fig. (3). Cellular models. 
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 This simple example illustrates the activity detection in 

distributed systems, in a generic way. According to the simu-

lation time management, autonomous and non-autonomous 

activity tracking are achieved by atomic components (or 

cells). In a discrete-event driven simulation, the simulation 

advances by event scheduling. According to the significance 

of state changes, components schedule events to be added to 

the new active set. States of components are encapsulated in 

discrete-events. Activity is tracked in an autonomous way by 

local transition functions of both influenced and influencing 

components. In a discrete-time driven simulation, a global 

transition function tests both influencing and influenced 

components. 

 Through mathematical structures, the next section ex-

tends the previous activity tracking principle embedding 

tests on continuous states. The “scannedComponentAc-

tivityCondition” corresponds to a test on the signifi-

cance of state changes 

STRUCTURE SPECIFICATION 

 DEVS and Discrete Time System Specification (DTSS) 

can be used to describe components activity [6]. 

Discrete-Event Structure Specification 

 A DEVS atomic component is described by a structure < 

X, S, Y, int, ext, conf, , ta >. X is the set of input events, S is 

the state set, Y is the set of output events, int is the internal 

transition function, ext is the external transition function, 

conf is the confluent transition function,  is the output func-

tion, and ta is the time advance function. Transition func-

tions are triggered by events, and they operate on a bag of 

inputs (denoted by X
b
) and the state of the system when an 

event occurs. 

 A DEVS network is defined as < X, Y, D, {Mi}, {Ii}, {Zij} 

>, where, X is the set of input events, Y is the set of output 

events, D is an index of components, and for each i  D, Mi 

is a basic DEVS model, Ii is the set of influences of model i. 

For each j  Ii, Zij is the i to j translation function. 

 Using the previous mathematical structure, both compo-

nent specification and activity detection are illustrated in the 

flowchart of Fig. (4). The latter represents the active behav-

ior of a DEVS atomic component. In a discrete-event driven 

simulation, first, the atomic component is activated by the 

occurrence of an external discrete event. Then, the external 

transition function 
 ext

 calculates the new state s '  according 

to its current state s  and to the value of the external event. If 

the state changes significantly (i.e., if s ' s + ), the com-

ponent is added to the scheduler, the time advance function 

ta s( )  calculates the occurrence of the next internal event. 

Significance 
 

0,+  of state changes is also used in the 

next discrete-time driven simulation for activity detection. 

Otherwise (if   s ' s + ), the component becomes inactive, 

the time advance function ta s( )  gives the occurrence time 

of the next internal event as infinite. The component is not 

added to the scheduler. When an internal event occurs, the 

output function  is executed before the internal transition 

function int . Again, the activity state is tested and occur-

rence time of the next internal event is then calculated. 

External

event

ext

Activity state

condition

+ss '
a
t

int

Passivate

+ss '=
a
t

Not added to

the scheduler

Added to the

scheduler

Added to the

current active set

 

Fig. (4). Activity of atomic components in a discrete-event simula-
tion. 

Discrete-Time Structure Specification 

 A DTSS atomic component is described by the structure: 

< X, Y, S, int, , h >, where (except for sets defined previ-

ously) h is the constant time advance. 

 To detect activity, the network of simple DTSS models is 

referred to as a Dynamic Structure Discrete Time Network 

(DSDTN
3
) [17]. Input and output sets are introduced to al-

low connections with the network. Formally, a DSDTN is a 

4-tuple: <XDSDTN,YDSDTN, , M >, where XDSDTN is the network 

input values set, YDSDTN is the network input values set,  is 

the name of the DSDTN executive, M  is the model of the 

executive . The model of the executive is a modified DTSS 

defined by the 8-tuple: M  = < X ,S , Y , , 
*
, int, ,  >, 

where  : Q  
*
 is the structure function, and 

*
 is the set 

of network structures. The transition function int,  computes 

the internal executive state s . The network executive struc-

ture , at the state s   S  is given by  =  (s ) = (D, {Mi}, 

{Ii}, {Zi,j}), for all i  D, Mi = < Xi, Si, Yi, int,i, i, hi >, where 

D is the set of component references, Ii is the set of influenc-

ers of model i, and Zi,j is the i to j translation function. Be-

cause the network coupling information is located in the 

state of the executive, transition functions can modify this 

state and, in consequence, modify the structure of the net-

                                                
3 The dynamic structure formalism is chosen here to allow the specification 

of the global activity transition function through int, . 
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work. Changes in structure include changes in model inter-

connections, changes in system definition, and the addition 

or deletion of system components. 

 Using the previous mathematical structure, both compo-

nent specification and activity detection are illustrated in the 

flowchart of Fig. (5). The latter represents the active behav-

ior of a DTSS atomic component. First, the active compo-

nent is activated. The simulation time is then incremented 

and the internal transition function 
 int

 is executed. Then, 

the component’s state s  is tested through the global transi-

tion function int,  (whose algorithm is described in the pre-

vious section). If the state change is not significant (i.e., if 

s ' s + ) the component returns in a passive state and is 

not added to the new active active set. Otherwise, (when 

s ' s + ), the output function  of the component is exe-

cuted. This process (Time increment  Execution of the 

internal transition function  Activity state condition) is 

effectuated until the end of the simulation. 

End of Simulation ?

Activity state condition

+ss '

Passivate

+ss '

yes

no

Removed from
the new active set

Added to the
current active setActivation

++t

int

false

true

 

Fig. (5). Activity of atomic components in a discrete-time simula-

tion. 

CELLULAR SYSTEMS 

 To track activity of cellular systems in a discrete-event 

driven simulation, usual DEVS models can be used. In a 

discrete-time driven simulation, we noticed that the imple-

mentation of a global transition function at the network level 

necessitates the use of dynamic structures. We introduce here 

after a cellular structure specification through dynamic struc-

tures. The specification of cells can be reused in a DEVS 

specification. However, dynamic structure specifications 

constitute a more powerful formalism than activity specifica-

tion (as coupling changes). Finally, data structures at the 

implementation level are presented. 

DSCA Structure Specification 

 We present here a DSCA specification as a dynamic 

structure network. A DSCA (Dynamic Structure Cellular 

Automata) is a structure: 

  
DSCA =< X

DSCA
,Y

DSCA
, DSCA >  

where, 
 
X

DSCA
 and 

 
Y

DSCA
, are respectively output and inputs. 

Dynamic structure changes are handed by: 

  

DSCA =< X
DSCA

,Y
DSCA

, S
DSCA

,
DSCA

,
DSCA

,
DSCA

>  

 The structural state is defined as 

  
S

DSCA
=< D, C

i{ } , I
i{ } , Z

i, j{ } > . For all sub-systems  i D  

contains the DSCA references of active components, {Zi,j} is 

the set of coupling functions (all cells can be externally con-

nected to both input XDSCA and output YDSCA of the DSCA: 

  

Z
DSCA DSCA

: X
DSCA

X
DSCA

, 

  
Z

DSCA c
: X

DSCA
X

c
,
  
Z

c DSCA
: Y

c
Y

DSCA

4
,

  

Z
DSCA DSCA

: Y
DSCA

Y
DSCA

, and 
  
I

c
= N

c
, DSCA{ } , 

 

I
DSCA

= cell
i{ }{ }  where 

c
N  is the neighborhood of a cell c. 

It is a set of pairs representing the relative positions of the 

neighboring cells p and the cell c: 

   
N

c
= i

p
, j

p( ) / p I
c
, i

p
, j

p
i

p
, j

p
[ 1,1]{ } . 

 
  

DSCA
: X

DSCA
S

DSCA
S

DSCA
, is the structural state 

transition function. According to current structural state and 

inputs, the transition function can compute new structural 

states. Changes in structure include changes in cells neigh-

borhoods, changes in cell definitions, and addition or dele-

tion of cells. The structural state transition function is com-

posed of internal and external functions 

  
DSCA

=
int

DSCA

ex t
DSCA

. External transitions allow ac-

counting for external events and internal ones for autono-

mous computations of self states (for more information: 

[17].) 

 
  

DSCA
: S

DSCA
Y

DSCA
 is the structural state output 

function. Through the output function structural states can be 

sent to other models. 

 As a minimum assumption, each cell c can be specified 

as an atomic component: 

  
C =< X

c
,Y

c
, S

c
,

c
,

c
,

c
>  

  
S

c
=< m, n( ) , S

N
c , phase > ,  

                                                
4 For a modular specification, internal couplings of influenced neighboring 

cells are defined [case (2) of Fig. 6] as: 
  
Z

c c '
: Y

c
X

c '
. 
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with 

  

S
N

c = s
p

/ p I
c{ }

phase = "active"," passive",...{ }
 

where (m,n) are cells’ coordinates, and Nc has been defined 

previously as the neighborhood set. 

 When receiving or sending its state, a cell is in phase 

“active”, otherwise it is in phase “passive”. 

  

Fig. (6). A Dynamic Structure Cellular Automata. 

 
  c

: X
c

S
c

S
c
 is the transition function

5
 composed of 

internal and external functions 
  

c
=

int
c

ex t
c

{ } , where 

 
  

int
c

: S
c

S
c
, and 

  
ext

c

: X
c

S
c

S
c

. 

 
  c

: S
c

Y
c
 is the output function. 

 
   c

: S
c 0

+
 is a constant time advance. 

 For a more complex cell, the latter can be decomposed as 

a network (dynamic structure or not) of sub-components 

[18]. However, regarding the closure under coupling of 

DSDEVS, precise network specifications can be expressed 

by (or is equivalent to) a single atomic specification (more 

details in [6]). 

Efficient Implementation 

 The relevant issues we retain are: the number of cells 

(active and passive), the velocity performance and the mem-

ory capacity required. In accordance with these issues, two 

basic approaches can be retained to encapsulate and to ma-

nipulate the world data structure [19] (cf. Fig. (7)). The first 

is spatial oriented and the second is entity oriented. In a spa-

tial oriented approach we can see the world like a grid pro-

viding a matrix of positions where a position can be assigned 
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to an entity. This approach is suitable for simulations with a 

large number of fix entities and where the computer time 

performance is more important than memory constraints. 

The second approach is for simulations with few simulation 

entities and when we do not want to use the large memory 

space required by a spatial localization table (matrix of posi-

tions). Thus, localization information is saved inside the en-

tity instead of having a matrix of position where a position 

points to the entity. As a consequence, little memory space 

will be lost in the simulation implementation. However, the 

computer time performance will decrease since to get infor-

mation about environmental position we may have to consult 

all entities in the worst case. 
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Fig. (7). Choices of world data structure for DES. 

 For large cell space simulations, a combination of the 

two first approaches can be achieved using a spatial-oriented 

representation for the cellular space and an entity-oriented 

representation for the active set of cells. Hence, a set of 

marks of active entities (cells) can be defined using the en-

tity-oriented data structure. In a discrete-time driven simula-

tion, at each time step the global transition function scans the 

active set adding or removing references of entities accord-

ing to their state. In a discrete-event driven simulation, cells 

add and remove their own mark through internal discrete-

events. 

 To reduce execution times, dynamic allocations should 

be suppressed. Indeed, for significant numbers of object in-

stantiation/deletion, dynamic allocation is inefficient and 

specialized static allocations have to be designed [20]. A pre-

dimensioning via large static arrays and vectors can be easily 

achieved thanks to current modern computer memory capa-

bilities. 

APPLICATIONS DISCUSSION 

 The sub-section dealing with activity tracking in a dis-

tributed system described activity tracking of a discrete vari-

able (presence of a token or not). A deeper and more inter-

esting category is those of continuous systems. Among them, 

ordinary differential equations constitute a fundamental 

study case. Using them, physics-based models of the real 

world can be designed. For activity tracking, continuous sys-

tems raise the problem of the detection precision of infinitely 

rapid state changes. In [21-23], a new method, the quantiza-

tion, is used to focus precisely computations of discrete-

event simulations on the most active segments of a continu-

ous curve. Efficiency advantages and stability of this method 

are discussed in [24]. Continuous systems can be coupled in 
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partial differential equations (PDE). In [18, 25], PDE have 

been discretized through cellular models. 

 Cellular models constitute a representative application 

case of a distributed system constituted of many interacting 

sub-systems. For simulation efficiency, cellular systems ne-

cessitate focusing computations on active cells among many 

inactive ones. To achieve this goal, activity tracking has been 

used in discrete-event driven simulations [3, 26, 27] as well 

as in discrete-time driven simulations [26, 28, 29]. In both 

approaches, errors introduced by excluding components con-

sidered as inactive from the calculation domain are evalu-

ated. In both approaches parallel and distributed simulations 

of active components have been achieved [30, 31]. In [30], 

activity has been used for load balancing of a discrete-event 

driven simulation. In [31], a fine-grain parallelization of a 

discrete-time driven simulation has been performed. In every 

approach focusing on active cells induced a reduction of 

execution time. 

 A good example of cellular models obtained from PDE 

discretization are fire spread simulation [28] (cf. Fig. (1)). 

After a space discretization, each cell dynamics is modeled 

by an ordinary differential equation. Inactive cells relate to 

burned trees (close to the water) and unburned cells to trees 

away from the fire front. Active cells relate to burning and 

heated trees. 

 As discussed previously, computation focus on cells can 

be achieved in a discrete-time driven simulation (and DSCA) 

[28] or a discrete-event driven simulation [18]. In both ap-

proaches, significance of continuous state changes is used to 

focus on activity. Increasing temperature gradients lead to 

reduce the number of transitions and execution times. In the 

discrete-event approach, more transitions are necessary to 

focus precisely on activity changes. This is a fine-grain ac-

tivity tracking. In the discrete-time approach, a coarse-grain 

activity tracking is used. Cells close to the fire front become 

active according to the temperature gradient threshold. Then, 

the temperature curve evolution is calculated according a fix 

time step. Contrarily to the discrete-event simulation, what-

ever the activity level, only the first threshold is detected. 

This is a coarse-grain activity tracking. Fig. (8) presents exe-

cution times and transition reductions for different quanta in 

a discrete-event driven simulation. Simulations have been 

performed on a 1.5GHz Pentium M Centrino, for 10 000 

cells. 

 Fig. (9) presents the linear average relative error (com-
pared with a usual explicit scheme simulation already vali-
dated) as the quantum size increases. In fact, increasing the 
quantum size induces a delay in the fire front propagation. 

CONCLUSION AND FUTURE WORKS 

 The activity tracking paradigm has been introduced as a 

new emerging world view for efficient and rigorous model-

ing and simulation. A major advantage of this paradigm is 

that component-based simulations are a natural bi-product. 

Informal, formal and implementation specification levels 

have been provided to guide modelers in step-by-step model 

development. Further efforts will be now necessary to eluci-

date this new paradigm in other applications. 

 

Fig. (8). Activity in a discrete-event driven simulation [18]. 

 

Fig. (9). Average relative error in a discrete-event driven simulation 
[18]. 
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