
30 The Open Cybernetics and Systemics Journal, 2008, 2, 30-38

 1874-110X/08 2008 Bentham Science Publishers Ltd.

Introduction to the Activity Tracking Paradigm in Component-Based
Simulation

A. Muzy
*,1

 and B.P. Zeigler
2

1
Laboratory CNRS LISA, Università di Corsica – Pasquale Paoli, UFR Drittu, Scenzi suciali, Ecunòmichi è di Gestioni,

22, av. Jean Nicoli, BP 52, 20250 Corti, France

2
Arizona Center for Integrative Modeling and Simulation, Department of Electrical and Computer Engineering,

University of Arizona, 1230 E Speedway Blvd, Tucson, Arizona, USA

Abstract: Dynamic systems are studied and modeled through the description of state changes (or trajectories). State

changes over time constitute the activity of a dynamic system. In a component-based simulation, state changes depend on

both computations and exchanges of information. In this paper, the activity tracking paradigm is introduced as a guide for

modeling dynamic systems and developing corresponding efficient component-based simulations. Mechanisms and struc-

tures to track and describe activity through information are informally and formally introduced.

INTRODUCTION

 Currently, simulation opens new perspectives to Science.

In contrast to the era of hand computation, today increas-

ingly the dynamics of complex systems are directly modeled

to be simulated on digital computers. This induces a shift of

methodology in the scientific community. Modeling theories

are selected to fit the ability of computers to deal automati-

cally with digital information.

 Fig. (1) is a 3D picture of a fire spreading simulation. It

is a good introduction of what is a simulation goal in “virtual

reality.” To achieve this goal (modeling a fire spread), con-

sider two alternative questions: (i) “You are a point in space

at position (x,y,z), are you in fire? Will you receive heat en-

ergy?” (asking all non-burning points in space), or (ii) “You

are a burning point in space at position (x,y,z), how will you

propagate heat energy?” Answering to the second question

(which is more intuitive and turns out to be more efficient)

leads to the approach of activity tracking and specification,

in space and time.

 When dealing with dynamic complex systems, the scope

is to describe activity and topology of systems. In simula-

tion, complexity of systems depends on: (i) the quantity of

digital information to store, (ii) the quantity of digital infor-

mation to exchange, and (iii) the number of computations to

perform. Information storage relates to memory space. In-

formation exchanges and computations relate to simulation

activity.

 Focusing on activity makes the simulation systems more

efficient. Efficiency of the simulation depends first on the

modeling efficiency. The latter necessitates using concise

structures reusable simulation components. To be efficient

the challenge is to benefit from component advantages while

*Address correspondence to this author at the Laboratory CNRS LISA,

Università di Corsica – Pasquale Paoli, UFR Drittu, Scenzi suciali, ecunò-

michi è di gestioni, 22, av. Jean Nicoli, BP 52, 20250 Corti, France;

E-mail: a.muzy@univ-corse.fr

reducing execution overheads induced by the communication

between components [2, 3].

 Our purpose here is to introduce the activity tracking

paradigm as an efficient and reusable top-down specification

guide from modeling to simulation. Using this paradigm,

models and components designed for simulation should be

simpler, clearer and faster.

Fig. (1). Screenshot of a fire spread simulation (visualization tool
used: [1]).

 By the word “paradigm”, we consider a set of fundamen-

tal critics, rules, analysis, thoughts and structures on which

theories and models can be developed. Informal and formal

notations, simple algorithms, implementation considerations

are provided as “keys” to guide the modeler. At every step of

the modeling process, models are incrementally designed

through activity focusing on the relevant structure elements.

A guide to reduce complexity from modeling and design

points of view is provided. Computation structures of com-

mon sense are provided to map more efficiently changes of

real systems. This new design perspective aims to be more

generic than usual simulation world views and more abstract

than reasoning on precise algorithm complexity.

Activity Tracking Paradigm in Component-Based Simulation The Open Cybernetics and Systemics Journal, 2008, Volume 2 31

 The paper is organized as follows. In section 2, concepts

and elements of conventional world views and simulation

time flows are abstracted and combined. In section 3, a high-

level activity tracking pattern is proposed and activity track-

ing in a distributed system example is presented. In section

4, activity is described through mathematical structures for

both discrete-event and discrete-time driven simulations. In

section 5, a special case of distributed systems (spatial sys-

tems) is described through cellular models. A mathematical

structure for cellular model specifications and implementa-

tion design issues are presented. In section 6, an example test

bench application is presented and discussed. Finally, con-

clusion and further works are provided.

CONVENTIONAL COMPOSITE SIMULATION
STRATEGIES

 A modeling and simulation life cycle is usually com-

posed of three fundamental steps:

1. Observation and Delimitation of the System

 For a particular problem, according to modeling objec-

tives, by experimenting (questioning) a real (or speculative

or imaginative) system, experimental data are collected (or

defined) within an experimental frame
1
.

2. System Modeling

 According to a first modeling view, a first model can be

defined by abstracting both structure and dynamics of the

system in attempting to meet the objectives. This model can

be deterministic and/or stochastic, continuous and/or dis-

crete. Discrete models
2
 can then be defined hierarchically

through many other modeling views.

3. Implementation, Verification and Validation

 Finally, trajectories of a discrete model (which is compo-

nent-based) are produced by simulation, i.e., the process a

model state evolves in time through action mechanisms (the

abstract simulators [6]). This permits the verification of the

internal structure of the simulation system. A study of these

results allows validating, invalidating, learning and improv-

ing the model.

CONVENTIONAL WORLD VIEWS

 In the modeling and simulation life cycle, the view con-

cept is fundamental for efficiency and to guide the modeler.

A view (or a facet) corresponds to the manner the modeler

will answer the problem and account for modeling objectives

[5]. Usually, complexity of both structure and behavior of a

real complex system cannot be represented faithfully by a

computer (as a one-to-one mapping). Different models have

to be abstracted, designed and simulated to build many vir-

tual representations, each one improving the understanding

of the system. Notice that this multi-model conception can

be used broadly as a modeling philosophy in whatever scien-

tific approach. The choice of one view depends on modeler’s

1 An experimental frame describes the conditions under which the system is

being observed or experimented. For more information on experimental

frames [4, 5].
2 which can be approximations of the continuous system if this latter does

not have analytical solutions.

popular and scientific cultures, his knowledge level and

modeling requirements (execution time, precision, etc.) In

short: an objective is the question a model is developed to

answer; a view is how to build this model (and answer). To

reduce complexity for one modeling objective, one view can

be further adapted or views can be combined together [7].

The choice of views determines both intelligibility of the

model and simulation performance. Finally, adapting J.M.

Legay’s thinking [8], we can say that, “it is the multiplicity

of the point of views [and of the modeling objectives] as

well as the confrontation of the results of the corresponding

models, which lead to a better knowledge of the system un-

der study.” We call such an approach multi-view and multi-

objective.

 There are three common types of discrete event simula-

tion strategies, also called world views, that are employed in

discrete event simulation languages and packages [6, 9, 10]:

event-scheduling, activity-scanning, and process-oriented. A

strategy makes certain forms of model description more

naturally expressible than others. In all of these world-views,

an event is an instantaneous change in the state of a system at

a particular time. Event scheduling models work with pre-

scheduling of all events and there is no provision for activat-

ing events by tests on the global state. In contrast, in the ac-

tivity scanning approach, events can be conditioned on a

contingency test in addition to being scheduled to occur in

time. A model is said to be active when both its scheduling

time has occurred and its contingency test is satisfied. The

process interaction world view is a combination of the event

scheduling and activity scanning strategies. A detailed for-

mulation is provided in [6].

 In this paper, we propose an activity tracking approach

that differs from the classical activity scanning strategy in

fundamental way to be explained.

SIMULATION TIME FLOWS

 In simulation, using digital computers, a distinction is

made between the continuous time of reality and simulation

time. In digital simulation, the flow of time can only be rep-

resented by discrete values that can be obtained by a discre-

tization of the continuous time stream. Simulation time can

be managed two ways [9]: by a clock or discrete-events. In a

clock (or discrete-time) driven simulation, the simulation

time is incremented by a constant step t, from t to t+ t.

State changes occurring between [t, t+ t] are computed at

t+ t. The time base is represented by integer values (or mul-

tiples thereof) and models are called discrete-time models.

These models are very prevalent in simulation of physics-

based control systems. In a discrete-event driven simulation,

the simulation progresses from the occurrence date of an

event to that of another, i.e., from one discrete state change

to another. In this case, the time base can be represented by

real numbers but only a finite set of such values can occur in

a finite interval of time. The models are called discrete-event

models and have been widely used especially for advanced

technological systems such as in manufacturing [11]. They

include Timed Petri Nets [12], timed automata [13], and

Discrete Event System Specification (DEVS) [6].

32 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Muzy and Zeigler

 The advantage of discrete-event driven simulations is that

a simulation model evolves directly from one state change to

another. During inactivity periods, no computations are per-

formed. However, at every state change, this necessitates to

be able to forecast the occurrence date of the next state

change, as well as to deal with event managements in a

scheduler. On the other hand, in a discrete-time driven simu-

lation one has to deal with the precision of the time step for

the detection of state changes.

 The decision to choose a simulation time management

depends on the nature of the system and on the modeling

objectives. For a system in which every state change occurs

at a fixed t, discrete-events will produce simulation over-

head, and a discrete-time driven simulation will be more

efficient. In simple words, we do not have to predict (by

computation) what we know to happen and when. However,

we can easily admit that in natural systems discrete-time

evolution does not exist. Discrete-time flows only exist in a

modeler’s mind and in industrial processes (e.g., robots) or

after the discretization of the real and continuous time by

humans [14]. For other systems, “while other formalisms

allow representation of space and resources, only discrete-

event models offer the traditional ability to explicitly and

flexibly express time and its essential constraints on complex

adaptive systems behavior and structure” [15].

 Due to a long history of applications that pre-dates the

dawn of the digital computer, discrete-time driven simula-

tions are more pervasive to discrete-event simulations. How-

ever, it is increasingly recognized that discrete-events are

essential to take into account external events in discrete-time

components. Moreover, there is no loss in expressiveness in

moving to the discrete-event representation, since every dis-

crete-time state change can be considered as an internal

event of a simulation model.

 How to choose or to combine modeling views and time

flows is not evident. In the next section, these concepts are

merged through the activity tracking paradigm.

ACTIVITY TRACKING

 According to objectives, tools and views a modeler dis-

poses, a common activity pattern can be used and interpreted

to model and simulate distributed interacting components.

Activity Tracking Pattern

 Fig. (2) depicts the activity pattern. The latter offers a

new perspective to modelers merging the three usual world

views (activity- event- and process-oriented strategies).

Marks are added to track propagating activity in a compo-

nent hierarchy. Every usual view is underlined. At every

simulation time step, an active set of components is deter-

mined.

 Using the activity pattern, components can entirely be

modeled and simulated through activity tracking (informa-

tion exchanges and computations), in two steps:

• First, the propagation activity is tracked. Information

exchanged between components is routed and com-

puted. The current active set is scanned. Events are

routed and output transitions are computed. Final re-

ceivers can be found in the hierarchy using a recur-

sive routing function (for more information, see [2]).

The current (ordered) active set is updated including

imminent components for external transitions. Order

of the active set depends on a tie-breaking function of

imminent components (for more information: [6]).

• Second, according to current states and to new infor-

mation inputs, new states are computed. External and

internal transitions (due to external and internal

events) of active components are computed. Compo-

nents changing state significantly are marked to be

added to the new (ordered) active set. In a discrete-

event driven simulation, the new active set corre-

sponds to a scheduler and active components are

marked to execute further their internal transition

function (corresponding to an internal event occur-

rence). In this case, the current active (ordered) set is

a sub-set of the scheduler, which corresponds to com-

ponents active at the current simulation time.

 Initialize
the active set

Time increment

Scan all components of the current active (ordered) set
Compute and route output external events

Add marks to receivers

simulation

End of

END

No

Scan all components of the current active (ordered) set
Compute new state s

Conditionally add marks

Update the current (ordered) active set

Update the new (ordered) active set

Fig. (2). Activity tracking pattern.

Activity Tracking in Distributed Systems

 When distributed components exchange information to-

gether, the determination of active components depends on

the simulation time management. According to the latter

different mechanisms need to be specified to represent the

behavior to be simulated. The following simple example is

used as a generic case for discussing activity tracking

through component modularity and simulation time man-

agement. Fig. (3) describes the behavior to simulate and then

three possible different solutions. The behavior to simulate

consists of activating right neighbors of a simple 1-D cellular

automata (CA) at different times, reproducing tokens. Cross-

ing times are represented under arrows.

Activity Tracking Paradigm in Component-Based Simulation The Open Cybernetics and Systemics Journal, 2008, Volume 2 33

 CA [16] is amongst the most well-known paradigms for

specifying spatially distributed systems. Standard CA consist

of an infinite lattice of discrete identical sites, each site tak-

ing on a finite selection of, for instance, integer values. Val-

ues of sites evolve synchronously in discrete time steps ac-

cording to deterministic rules that specify the value of each

site in terms of the values of neighboring sites. This basic

definition of CA (infinite lattice, neighborhood and rule uni-

formity of cells, closure of the system to external events,

discrete states of cells, etc.) is too limited to specify compli-

cated cellular models. Extensions of basic cellular automata

for tracking activity (using a discrete-time or a discrete-event

time base) are considered here after.

 Using a discrete-time management, as the smallest time

precision is 0.1, the whole discrete-time step has to be:

t=0.1. A first simulation of this behavior can be achieved

using basic cellular automata. The latter computes every

component’s state, at every time step, using directly the state

of influencing left neighboring components. Local transition

functions consist of:

If (influencingComponentState==‘getaToken’ &&

 simulationTimeRequired==true) Then

 myComponentState newState //get a token

endIf

 At every time step the whole local transition functions of

components are activated, in an inefficient way. Such basic

cellular automata do not allow focusing computations only

on active components.

 Still using a discrete-time base, another solution can be

defined to track activity in space. Basic CA use a simple

reductionistic view defining exclusively the global behavior

as the behavior of the parts (cells). To track activity, a global

state transition function is added. An activity state (‘inac-

tive’, ‘active’ and ‘activeTesting’) is added to the cells. The

activity state ‘activeTesting’ is used to track new activated

components. Then, as a generic global transition function, a

simple algorithm can be used to determine new active testing

components:

If (scannedComponentActivityState==‘active

 Testing’ && influencedComponent==

 ‘inactive’

 && scannedComponentActivityCondition==

 true) Then

 scannedComponentActivityState ‘active’

 influencedComponentActivity

 State ‘activeTesting’

endIf

 Here the scannedComponentActivityCondi-

tion corresponds to the test: If (simulation-

TimeRequired==true). Once this test is satisfied, the

local transition function is computed only for active and test-

ing components. Only components in the activity state ‘ac-

tive testing’ are tested. Obviously, another test can be added

to turn active components in inactive ones:

If (scannedComponentActivityState==‘active’

 && scannedComponentActivityCondition==

 false) Then

 scannedComponentActivityState ‘inactive’

endIf

 Here, this activity end condition will result in an active

set of only one active testing component. By the way, exter-

nal events can change states of components through ports (cf.

Fig. (3), external event on the last right cell).

 Using a discrete-event time base, components are

autonomous components communicating through ports and

external events, scheduling internal events. Cells receiving

the required type of external event (token reception) achieve

the following algorithm through a local transition function:

If (inputEventType==true && myActivity

 State==’inactive’) Then

 //new token

 schedule (internalEvent(delay))

 myActivityState ‘active’

 myComponentState newState //get a token

endIf

 When the component is reactivated by the internal event

reception (after the delay required), the following algorithm

is executed locally:

If (myActivityState==‘active’) Then

 send (externalEvent)

 myActivityState ‘inactive’

endIf

Fig. (3). Cellular models.

34 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Muzy and Zeigler

 This simple example illustrates the activity detection in

distributed systems, in a generic way. According to the simu-

lation time management, autonomous and non-autonomous

activity tracking are achieved by atomic components (or

cells). In a discrete-event driven simulation, the simulation

advances by event scheduling. According to the significance

of state changes, components schedule events to be added to

the new active set. States of components are encapsulated in

discrete-events. Activity is tracked in an autonomous way by

local transition functions of both influenced and influencing

components. In a discrete-time driven simulation, a global

transition function tests both influencing and influenced

components.

 Through mathematical structures, the next section ex-

tends the previous activity tracking principle embedding

tests on continuous states. The “scannedComponentAc-

tivityCondition” corresponds to a test on the signifi-

cance of state changes

STRUCTURE SPECIFICATION

 DEVS and Discrete Time System Specification (DTSS)

can be used to describe components activity [6].

Discrete-Event Structure Specification

 A DEVS atomic component is described by a structure <

X, S, Y, int, ext, conf, , ta >. X is the set of input events, S is

the state set, Y is the set of output events, int is the internal

transition function, ext is the external transition function,

conf is the confluent transition function, is the output func-

tion, and ta is the time advance function. Transition func-

tions are triggered by events, and they operate on a bag of

inputs (denoted by X
b
) and the state of the system when an

event occurs.

 A DEVS network is defined as < X, Y, D, {Mi}, {Ii}, {Zij}

>, where, X is the set of input events, Y is the set of output

events, D is an index of components, and for each i D, Mi

is a basic DEVS model, Ii is the set of influences of model i.

For each j Ii, Zij is the i to j translation function.

 Using the previous mathematical structure, both compo-

nent specification and activity detection are illustrated in the

flowchart of Fig. (4). The latter represents the active behav-

ior of a DEVS atomic component. In a discrete-event driven

simulation, first, the atomic component is activated by the

occurrence of an external discrete event. Then, the external

transition function
 ext

 calculates the new state s ' according

to its current state s and to the value of the external event. If

the state changes significantly (i.e., if s ' s +), the com-

ponent is added to the scheduler, the time advance function

ta s() calculates the occurrence of the next internal event.

Significance

0,+ of state changes is also used in the

next discrete-time driven simulation for activity detection.

Otherwise (if s ' s +), the component becomes inactive,

the time advance function ta s() gives the occurrence time

of the next internal event as infinite. The component is not

added to the scheduler. When an internal event occurs, the

output function is executed before the internal transition

function int . Again, the activity state is tested and occur-

rence time of the next internal event is then calculated.

External

event

ext

Activity state

condition

+ss '
a
t

int

Passivate

+ss '=
a
t

Not added to

the scheduler

Added to the

scheduler

Added to the

current active set

Fig. (4). Activity of atomic components in a discrete-event simula-
tion.

Discrete-Time Structure Specification

 A DTSS atomic component is described by the structure:

< X, Y, S, int, , h >, where (except for sets defined previ-

ously) h is the constant time advance.

 To detect activity, the network of simple DTSS models is

referred to as a Dynamic Structure Discrete Time Network

(DSDTN
3
) [17]. Input and output sets are introduced to al-

low connections with the network. Formally, a DSDTN is a

4-tuple: <XDSDTN,YDSDTN, , M >, where XDSDTN is the network

input values set, YDSDTN is the network input values set, is

the name of the DSDTN executive, M is the model of the

executive . The model of the executive is a modified DTSS

defined by the 8-tuple: M = < X ,S , Y , ,
*
, int, , >,

where : Q
*
 is the structure function, and

*
 is the set

of network structures. The transition function int, computes

the internal executive state s . The network executive struc-

ture , at the state s S is given by = (s) = (D, {Mi},

{Ii}, {Zi,j}), for all i D, Mi = < Xi, Si, Yi, int,i, i, hi >, where

D is the set of component references, Ii is the set of influenc-

ers of model i, and Zi,j is the i to j translation function. Be-

cause the network coupling information is located in the

state of the executive, transition functions can modify this

state and, in consequence, modify the structure of the net-

3 The dynamic structure formalism is chosen here to allow the specification

of the global activity transition function through int, .

Activity Tracking Paradigm in Component-Based Simulation The Open Cybernetics and Systemics Journal, 2008, Volume 2 35

work. Changes in structure include changes in model inter-

connections, changes in system definition, and the addition

or deletion of system components.

 Using the previous mathematical structure, both compo-

nent specification and activity detection are illustrated in the

flowchart of Fig. (5). The latter represents the active behav-

ior of a DTSS atomic component. First, the active compo-

nent is activated. The simulation time is then incremented

and the internal transition function
 int

 is executed. Then,

the component’s state s is tested through the global transi-

tion function int, (whose algorithm is described in the pre-

vious section). If the state change is not significant (i.e., if

s ' s +) the component returns in a passive state and is

not added to the new active active set. Otherwise, (when

s ' s +), the output function of the component is exe-

cuted. This process (Time increment Execution of the

internal transition function Activity state condition) is

effectuated until the end of the simulation.

End of Simulation ?

Activity state condition

+ss '

Passivate

+ss '

yes

no

Removed from
the new active set

Added to the
current active setActivation

++t

int

false

true

Fig. (5). Activity of atomic components in a discrete-time simula-

tion.

CELLULAR SYSTEMS

 To track activity of cellular systems in a discrete-event

driven simulation, usual DEVS models can be used. In a

discrete-time driven simulation, we noticed that the imple-

mentation of a global transition function at the network level

necessitates the use of dynamic structures. We introduce here

after a cellular structure specification through dynamic struc-

tures. The specification of cells can be reused in a DEVS

specification. However, dynamic structure specifications

constitute a more powerful formalism than activity specifica-

tion (as coupling changes). Finally, data structures at the

implementation level are presented.

DSCA Structure Specification

 We present here a DSCA specification as a dynamic

structure network. A DSCA (Dynamic Structure Cellular

Automata) is a structure:

DSCA =< X

DSCA
,Y

DSCA
, DSCA >

where,

X

DSCA
 and

Y

DSCA
, are respectively output and inputs.

Dynamic structure changes are handed by:

DSCA =< X
DSCA

,Y
DSCA

, S
DSCA

,
DSCA

,
DSCA

,
DSCA

>

 The structural state is defined as

S

DSCA
=< D, C

i{ } , I
i{ } , Z

i, j{ } > . For all sub-systems i D

contains the DSCA references of active components, {Zi,j} is

the set of coupling functions (all cells can be externally con-

nected to both input XDSCA and output YDSCA of the DSCA:

Z
DSCA DSCA

: X
DSCA

X
DSCA

,

Z

DSCA c
: X

DSCA
X

c
,

Z

c DSCA
: Y

c
Y

DSCA

4
,

Z
DSCA DSCA

: Y
DSCA

Y
DSCA

, and

I

c
= N

c
, DSCA{ } ,

I
DSCA

= cell
i{ }{ } where

c
N is the neighborhood of a cell c.

It is a set of pairs representing the relative positions of the

neighboring cells p and the cell c:

N

c
= i

p
, j

p() / p I
c
, i

p
, j

p
i

p
, j

p
[1,1]{ } .

DSCA
: X

DSCA
S

DSCA
S

DSCA
, is the structural state

transition function. According to current structural state and

inputs, the transition function can compute new structural

states. Changes in structure include changes in cells neigh-

borhoods, changes in cell definitions, and addition or dele-

tion of cells. The structural state transition function is com-

posed of internal and external functions

DSCA

=
int

DSCA

ex t
DSCA

. External transitions allow ac-

counting for external events and internal ones for autono-

mous computations of self states (for more information:

[17].)

DSCA
: S

DSCA
Y

DSCA
 is the structural state output

function. Through the output function structural states can be

sent to other models.

 As a minimum assumption, each cell c can be specified

as an atomic component:

C =< X

c
,Y

c
, S

c
,

c
,

c
,

c
>

S

c
=< m, n() , S

N
c , phase > ,

4 For a modular specification, internal couplings of influenced neighboring

cells are defined [case (2) of Fig. 6] as:

Z

c c '
: Y

c
X

c '
.

36 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Muzy and Zeigler

with

S
N

c = s
p

/ p I
c{ }

phase = "active"," passive",...{ }

where (m,n) are cells’ coordinates, and Nc has been defined

previously as the neighborhood set.

 When receiving or sending its state, a cell is in phase

“active”, otherwise it is in phase “passive”.

Fig. (6). A Dynamic Structure Cellular Automata.

 c

: X
c

S
c

S
c
 is the transition function

5
 composed of

internal and external functions

c
=

int
c

ex t
c

{ } , where

int
c

: S
c

S
c
, and

ext

c

: X
c

S
c

S
c

.

 c

: S
c

Y
c
 is the output function.

 c

: S
c 0

+
 is a constant time advance.

 For a more complex cell, the latter can be decomposed as

a network (dynamic structure or not) of sub-components

[18]. However, regarding the closure under coupling of

DSDEVS, precise network specifications can be expressed

by (or is equivalent to) a single atomic specification (more

details in [6]).

Efficient Implementation

 The relevant issues we retain are: the number of cells

(active and passive), the velocity performance and the mem-

ory capacity required. In accordance with these issues, two

basic approaches can be retained to encapsulate and to ma-

nipulate the world data structure [19] (cf. Fig. (7)). The first

is spatial oriented and the second is entity oriented. In a spa-

tial oriented approach we can see the world like a grid pro-

viding a matrix of positions where a position can be assigned

5 Modularity cases: (1)

S

c
= S

c

N
c and

X

c
= X

DSCA
 (assuming external direct

influences of cells), (2)

X

c
= X

DSCA
X

c

N
c , with

X

c

N
c = x

p
/ p I

c{ }

(assuming strong modularity and port interfaces).

to an entity. This approach is suitable for simulations with a

large number of fix entities and where the computer time

performance is more important than memory constraints.

The second approach is for simulations with few simulation

entities and when we do not want to use the large memory

space required by a spatial localization table (matrix of posi-

tions). Thus, localization information is saved inside the en-

tity instead of having a matrix of position where a position

points to the entity. As a consequence, little memory space

will be lost in the simulation implementation. However, the

computer time performance will decrease since to get infor-

mation about environmental position we may have to consult

all entities in the worst case.

E

C

D

B

A

Position (3,1)

Position (5,3)

Position (6,6)

Position (4,7)

Position (2,4)

E

D

C

B

A

Entity-oriented structure Spatial-oriented structure

Fig. (7). Choices of world data structure for DES.

 For large cell space simulations, a combination of the

two first approaches can be achieved using a spatial-oriented

representation for the cellular space and an entity-oriented

representation for the active set of cells. Hence, a set of

marks of active entities (cells) can be defined using the en-

tity-oriented data structure. In a discrete-time driven simula-

tion, at each time step the global transition function scans the

active set adding or removing references of entities accord-

ing to their state. In a discrete-event driven simulation, cells

add and remove their own mark through internal discrete-

events.

 To reduce execution times, dynamic allocations should

be suppressed. Indeed, for significant numbers of object in-

stantiation/deletion, dynamic allocation is inefficient and

specialized static allocations have to be designed [20]. A pre-

dimensioning via large static arrays and vectors can be easily

achieved thanks to current modern computer memory capa-

bilities.

APPLICATIONS DISCUSSION

 The sub-section dealing with activity tracking in a dis-

tributed system described activity tracking of a discrete vari-

able (presence of a token or not). A deeper and more inter-

esting category is those of continuous systems. Among them,

ordinary differential equations constitute a fundamental

study case. Using them, physics-based models of the real

world can be designed. For activity tracking, continuous sys-

tems raise the problem of the detection precision of infinitely

rapid state changes. In [21-23], a new method, the quantiza-

tion, is used to focus precisely computations of discrete-

event simulations on the most active segments of a continu-

ous curve. Efficiency advantages and stability of this method

are discussed in [24]. Continuous systems can be coupled in

Activity Tracking Paradigm in Component-Based Simulation The Open Cybernetics and Systemics Journal, 2008, Volume 2 37

partial differential equations (PDE). In [18, 25], PDE have

been discretized through cellular models.

 Cellular models constitute a representative application

case of a distributed system constituted of many interacting

sub-systems. For simulation efficiency, cellular systems ne-

cessitate focusing computations on active cells among many

inactive ones. To achieve this goal, activity tracking has been

used in discrete-event driven simulations [3, 26, 27] as well

as in discrete-time driven simulations [26, 28, 29]. In both

approaches, errors introduced by excluding components con-

sidered as inactive from the calculation domain are evalu-

ated. In both approaches parallel and distributed simulations

of active components have been achieved [30, 31]. In [30],

activity has been used for load balancing of a discrete-event

driven simulation. In [31], a fine-grain parallelization of a

discrete-time driven simulation has been performed. In every

approach focusing on active cells induced a reduction of

execution time.

 A good example of cellular models obtained from PDE

discretization are fire spread simulation [28] (cf. Fig. (1)).

After a space discretization, each cell dynamics is modeled

by an ordinary differential equation. Inactive cells relate to

burned trees (close to the water) and unburned cells to trees

away from the fire front. Active cells relate to burning and

heated trees.

 As discussed previously, computation focus on cells can

be achieved in a discrete-time driven simulation (and DSCA)

[28] or a discrete-event driven simulation [18]. In both ap-

proaches, significance of continuous state changes is used to

focus on activity. Increasing temperature gradients lead to

reduce the number of transitions and execution times. In the

discrete-event approach, more transitions are necessary to

focus precisely on activity changes. This is a fine-grain ac-

tivity tracking. In the discrete-time approach, a coarse-grain

activity tracking is used. Cells close to the fire front become

active according to the temperature gradient threshold. Then,

the temperature curve evolution is calculated according a fix

time step. Contrarily to the discrete-event simulation, what-

ever the activity level, only the first threshold is detected.

This is a coarse-grain activity tracking. Fig. (8) presents exe-

cution times and transition reductions for different quanta in

a discrete-event driven simulation. Simulations have been

performed on a 1.5GHz Pentium M Centrino, for 10 000

cells.

 Fig. (9) presents the linear average relative error (com-
pared with a usual explicit scheme simulation already vali-
dated) as the quantum size increases. In fact, increasing the
quantum size induces a delay in the fire front propagation.

CONCLUSION AND FUTURE WORKS

 The activity tracking paradigm has been introduced as a

new emerging world view for efficient and rigorous model-

ing and simulation. A major advantage of this paradigm is

that component-based simulations are a natural bi-product.

Informal, formal and implementation specification levels

have been provided to guide modelers in step-by-step model

development. Further efforts will be now necessary to eluci-

date this new paradigm in other applications.

Fig. (8). Activity in a discrete-event driven simulation [18].

Fig. (9). Average relative error in a discrete-event driven simulation
[18].

REFERENCES

[1] A. Muzy, D. Hill, M. Joubert, and E. Innocenti, "A post-processed

3D visualization tool for forest fire simulations", in IEEE Simu-
Tools. 2008. Ajaccio. Accepted for publication.

[2] A. Muzy, and J. J. Nutaro "Algorithms for efficient implementation
of the DEVS & DSDEVS abstract simulators", in 1st Open Interna-

tional Conference on Modeling and Simulation (OICMS). 2005.
Clermont-Ferrand, France. pp. 273-279.

[3] X. Hu, and B. P. Zeigler, "A high performance simulation engine
for large-scale cellular DEVS models", in High Performance Com-

puting Symposium (HPC'04), Advanced Simulation Technologies
Conference (ASTC). 2004. Arlington, USA. pp. 3-8.

[4] M. Traoré, and A. Muzy, "Capturing the dual relationship between
simulation models and their context", ScienceDirect TOP25 Hottest

Articles. Simulation Practice and Theory (SIMPRA), February
2006. vol. 14, no. 2, pp. 126-142.

[5] B. P. Zeigler, Multifaceted modelling and discrete event simulation.
Academic press ed. 1984, London.

[6] B. P. Zeigler, H. Praehofer, and T. G. Kim, "Theory of modelling
and simulation", 2000: Academic Press.

[7] A. Muzy, J. D. Lara, and E. Guerra, "Designing PRIMA: A Precise
Visual Language for Modeling with Agents, in a Physical environ-

ment", in MSV'07- The 2007 International Conference on Model-
ing, Simulation and Visualization Methods, Intel, MIT Media Labo-

ratory…. 2007. Monte Carlo Resort, Las Vegas, Nevada, USA pp.
231-238.

[8] J. M. Legay, L'expérience et le modèle. Un discours sur la
méthode. INRA ed. 1997, Paris.

[9] O. Balci, "The implementation of four conceptual frameworks for
simulation modeling in high-level languages", in Winter Simulation

Conference. 1988. pp. 287-295.
[10] P. Coquillard, and D. Hill, Modélisation et Simulation des Eco-

systèmes. Masson ed. 1997.

38 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Muzy and Zeigler

[11] Y. -C. Ho, Discrete Event Dynamic Systems: Analyzing Complexity

and Performance in the Modern World, ed. IEEE. 1993.
[12] J. Wang, Timed Petri Nets: Theory and Application, 1998, Boston:

Kluwer Academic Publishers.
[13] R. Alur, and D. Dill, "A theory of timed automata", Theoretical

Computer Science, 1994. vol. 126, pp. 183--235.
[14] A. Ralston, and P. Rabinowitz, A First Course in Numerical Analy-

sis. 2001: Dover Publications.
[15] B. P. Zeigler, Discrete event abstraction: an emerging paradigm

for modeling complex adaptative systems, in Adaptation and evolu-
tion (festschrift for John H. Holland), E. Oxford press, Editor.

2005, Santa Fe Institute.
[16] S. Wolfram, A new kind of science. Wolfram Media ed. 2002.

[17] F. J. Barros, "Modelling Formalisms for Dynamic Structure Sys-
tems", ACM Transactions on Modelling and Computer Simulation,

October 1997. vol. 7, no. 4, pp. 501-515.
[18] A. Muzy, A. Aïello, P. -A. Santoni, B. P. Zeigler, J. J. Nutaro, and

R. Jammalamadaka, "Discrete event simulation of large-scale spa-
tial continuous systems", in International Conference on Systems,

Man and Cybernetics (SMC), IEEE. 2005. Hawaii, USA. pp. 2991-
2998.

[19] A. Campos, and D. Hill, "An Agent-based Framework for Visual-
Interactive Ecosystem Simulations", SCS Transactions, 1998. vol.

15, no. 4, pp. 139-152.
[20] A. Muzy, E. Innocenti, D. R. C. Hill, A. Aïello, J. -F. Santucci, and

P. A. Santoni, "Object-oriented framework for modelling and simu-
lation of propagation processes: application to a fire spreading",

Environmental modelling and software, July 2005. vol. 20, no. 7,
pp. 827-842.

[21] B. P. Zeigler, DEVS theory of quantized systems. 1998.
[22] F. Cellier, and E. Kofman, Continuous System Simulation. 2006:

Springer-Verlag New York.

[23] J. Nutaro, Parallel discrete event simulation with applications to con-

tinuous systems. 2003, University of Arizona: Tucson.
[24] J. Nutaro, and B. P. Zeigler, "On the Stability and Performance of

Discrete Event Methods for Simulating Continuous Systems", J
Comput Phys November 2007. vol. 227, no. 1, pp. 797-819.

[25] R. Jammalamadaka, Activity characterization of spatial models:
application to discrete event solution of partial differential equa-

tions. 2003, University of Arizona: Tucson.
[26] J. Nutaro, "A discrete event method for wave simulation", ACM

Trans. Model. Comput. Simul., April 2006. vol. 16, no. 2, pp. 174-
195.

[27] J. Nutaro, B. P. Zeigler, R. Jammalamadaka, and S. Akrekar. "Dis-
crete event solution of gas dynamics within the DEVS framework:

exploiting spatiotemporal heterogeneity. in International Confer-
ence for Computational Science", 2003. Melbourne, Australia.

[28] A. Muzy, E. Innocenti, D. R. C. Hill, A. Aïello, J. F. Santucci, and
P. A. Santoni, "Dynamic structure cellular automata in a fire

spreading application. Chosen as one of the best papers of the con-
ference", in First International Conference on Informatics in Con-

trol, Automation and Robotics. 2004. Setubal, Portugal:
IEEE/CSS/IFAC/ACM/AAAI/APPIA. pp. 143-151.

[29] R. Jammalamadaka, and B. P. Zeigler, "A Generic Pattern for
Modifying Traditional PDE Solvers to Exploit Heterogeneity in

Asynchronous Behavior", in PADS 2007. pp. 45-52.
[30] S. Park, and B. P. Zeigler, "Distributing Simulation Work Based on

Component Activity: A New Approach to Partitioning Hierarchical
DEVS Models", in 1st International Workshop on Challenges of

Large Applications in Distributed Environments (CLADE). 2003.
[31] E. Innocenti, A. Muzy, D. R. C. Hill, A. Aïello, and J. F. Santucci,

"Design of a Multithreaded Parallel Model for Fire Spread", in 15
th European Simulation Symposium. 2003. Delft, The Netherlands:

SCS. pp. 104-10.

Received: December 31, 2007 Revised: January 15, 2008 Accepted: February 2, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

