
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1341-1349 1341

 1874-110X/15 2015 Bentham Open

Open Access
Attribute Reduction Based on Sorting and Incremental Method

Wang Biqing*

College of Mathematics and Computer, Tongling University, Tongling, Anhui, 244000, P.R. China

Abstract: Positive region is one of the core concepts in rough set theory. Time complexity of computing the positive re-
gion can directly affect other algorithms. In this paper, a new algorithm for computing equivalence classes based on gen-
eralized quick sort and insertion sort is provided and its time complexity for computing U/C is cut down to O(|C||U|) com-
pared with other traditional algorithms. On this basis, an algorithm for fast computing positive region by adding identifier
attributes to sorted decision tables is proposed and its time complexity for computing POSC(D) is cut down to O(|C||U|)
accordingly. By using this foundation, two incremental algorithms for fast computing positive region are designed. They
make full use of equivalence classes and positive region which already exist to compute positive region incrementally.
Thus, these algorithms can reduce the computational work significantly and get higher efficiency. Among them, the algo-
rithm based on multi-way tree is the most efficient. Its time complexity for computing POSC(D) is far less than
O(|C||U/C|). Finally, an attribute reduction algorithm based on incremental method is given and its time complexity is
O(|C|2|U/C|). The sample analysis and experimental results show that the attribute reduction algorithm presented in this
paper is feasible and efficient.

Keywords: Attribute reduction, Incremental algorithm, Positive region, Rough set, Sorting.

1. INTRODUCTION

Rough set theory [1] is a mathematical tool which pro-
cesses fuzzy and uncertain knowledge. It is widely used in
artificial intelligence, machine learning, decision analysis,
process control, pattern recognition, data mining and other
fields. At present, researches on rough set algorithm include
how to compute upper approximation, lower approximation,
equivalence class, positive region, reduction, core, and so on.

As reduction [2] is one of the basic concepts in the rough
set theory, researches on rough set algorithm focus on attrib-
ute reduction, mainly including attribute in consistent deci-
sion tables and inconsistent decision table. Among them,
many are based on positive region [3]. In rough set theory,
positive region is also a very important concept. Computa-
tion of equivalence classes and positive region directly af-
fects other algorithms’ time complexity. So, how to compute
positive region efficiently is the key to increasing the effi-
ciency of its correlation algorithm.

For attribute reduction based on positive region, U/C
must be computed either using analysis method [4] or dif-
ferential matrix [5]. So U/C must be computed first in attrib-
ute reduction algorithms based on the positive region. Time
complexity of traditional algorithms for computing U/C is
O(|C||U|2) and it is not satisfactory. In a study [6], an algo-
rithm for computing U/C based on quick sort has been put
forward and its time complexity is O(|C||U|log|U|). On this
basis, an algorithm for computing U/C based on radix

*Address correspondence to this author at the College of Mathematics and
Computer, Tongling University, Tongling, Anhui, 244000, P.R. China;
Tel/Fax: 13866856958; E-mail: wbq@tlu.edu.cn

sort is presented in a study [7] and its time complexity is cut
down to O(|C||U|). But it is obtained on the basis that attrib-
ute value is one digit data. As time complexity of radix sort
is O(d|U|) where d is digit capacity of attribute value, time
complexity of the algorithm in the study [7] is O(d|C||U|)
actually. In this paper, an algorithm for computing U/C
based on generalized quick sort and insertion sort is provided
and its time complexity is cut down to O(|C||U|).

Although computation of positive region is very im-
portant, relatively few researches on algorithm of positive
region are carried out. Traditional algorithms [8] for compu-
ting POSC(D) judge whether every object in U belongs to
existing equivalence classes according to the value of condi-
tion attributes C, so as to compute the positive region. The
amount of calculation is great and its time complexity is
O(|C||U|2). Whether unclassified objects in U have the same
values of every attribute in condition attributes C is assessed
[9]. If so, they belong to the same equivalence class. In the
worst case, its time complexity is O(|C||U|2) like the tradi-
tional algorithms for computing POSC(D). Several new
properties of positive region, including record filtering prop-
erty, substitution property and decomposition property are
discussed. These properties are useful for simplifying the
dynamical computation of positive region and its time com-
plexity is O(|C||U|log|U|). As shown [11], an algorithm for
computing the equivalence classes based on radix sort by
using distributing counting is designed. Besides, time com-
plexity for computing POSC(D) using the algorithm is also
O(|C||U|log|U|). To improve the efficiency of the algorithms
for computing positive region, in this paper, an algorithm for
fast computing positive region by adding identifier attributes
to sorted decision tables is proposed on the basis of an in-
depth study of rough set theory. The algorithm’s time com-

1342 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wang Biqing

plexity is O(|C||U|). The detailed description of the algorithm
and time complexity analysis is given. The theoretical analy-
sis and experimental results indicate that this algorithm can
decrease the computational complexity effectively.

In recent years, most researches on positive region have
been focused on static information system. When the amount
of objects increases, recomputation of positive region may
waste many time and space resources. So, more effective
measures must be taken. Thus, two incremental algorithms
for fast computing positive region are presented in this pa-
per. The first one involves the attributes increase. The se-
cond one involves the objects increase based on multi-way
tree. They all obtain positive region incrementally on the
basis of equivalence classes and positive region which al-
ready exist. So, these algorithms can reduce the computa-
tional work significantly and get higher efficiency. Time
complexity of the second incremental algorithm is far less
than O(|C||U/C|). Finally, an attribute reduction algorithm
based on the second incremental method is proposed and its
time complexity is O(|C|2|U/C|).

2. PRELIMINARIES

In this section, we review some basic concepts in rough
set [1], [12] to be used in this paper.

Definition 1. An information system is defined as
S=(U,A,V,f), where U is the set of objects; A is the set of
attributes; V=!

Aa
aV

!

, where Va is the set of values of at-

tribute a; f:U×A→V is an information function, which de-
termines values of attribute of every object u, namely,
f(u,a)∈Va for every u∈U and a∈A.

If set of attributes can be divided into condition attributes
C and decision attributes D, namely, C∪D= A, C∩D=! ,
the information system is called decision system or decision
table, where D has only one attribute commonly.

Definition 2. In information system S, for every attribute
subset P!A, an indiscernibility relation IND(P) is defined
as IND(P)={(x,y)∈U×U: ∀a∈P, f(x,a)=f(y,a)}.

IND(P) is an equivalence relation. Equivalence class of x
for a set of attributes P is [x]IND(P)={y: y∈U, yIND(P)x}.

Relation IND(P) determines a division, which is ex-
pressed by U/IND(P). For convenience, P is used to substi-
tute IND(P). So, U/IND(P) can be denoted by U/P.

Definition 3. In information system S, for ∀R!A, ∀
X!U, U/R={R1,R2,…,Rl}, lower approximation is defined
as R X=U{Ri|Ri∈U/R,Ri∈X}, upper approximations is

defined as R (X)=U{Ri|Ri∈U/R,Ri∩X≠! }.

Definition 4. In decision table S, if f(ui,C)=f(uj,C) and
f(ui,D)≠f(uj,D) for ui,uj∈U and i≠j, S is called an incon-
sistent decision table. Otherwise, S is called a consistent de-
cision table.

Definition 5. In information system S, for ∀P,Q!A,
positive region POSP(Q) is defined as POSP(Q)= !

Q/UX

XP
!

,

where P X is P lower approximation of X.

Definition 6. In decision table S, for ∀P,Q!A, let
U/P={P1,P2,…,Pt} and U/Q={Q1,Q2,…,QS}. If ∀Pi∈U/P,
there exists Qj∈U/Q which makes Pi!Qj, U/P is called a
refinement of U/Q, denoted by U/P≤U/Q. If U/P≤U/Q and
U/Q≤U/P, U/P=U/Q.

Definition 7. In decision table S, for a∈C, a is unneces-
sary if POSC(D)=POSC-{a}(D). Otherwise a is necessary. The
set of all the necessary attributes is called the core of C and
is defined as CORED(C).

Definition 8. In decision table S, for R!C, R is called
an attribute reduction of C if POSR(Q)=POSC(D) and all the
attributes in R are necessary.

3. A NEW ALGORITHM FOR COMPUTING U/P
BASED ON GENERALIZED QUICK SORT AND IN-
SERTION SORT

After a thorough study on algorithms for computing U/P
in previous literatures, a new algorithm is given. We can sort
the decision table by attribute subset P using idea of general-
ized quick sort and insertion sort. Then, sorted decision table
is analyzed and equivalence classes are divided. Time com-
plexity for computing U/P is O(|P||U|).

Let us review the quick sort algorithm firstly. It arranges
data anew to divide awaiting processing sequence into two
subsequences and make all the data of the first subsequence
less than all the data of the second subsequence. Then, every
subsequence is sorted recursively. Thus, the whole sequence
can be sorted. In general case, a datum needs logN time
moves to get its final position. So, time complexity for quick
sort is O(NlogN). It can be generalized to present following
algorithm 1. To describe more distinctly, Theorem 1 and
Theorem 2 are given first.

Theorem 1. In decision table S, two objects ui,uj∈U be-
long to one equivalence class for a set of attributes P if and
only if f(ui,a)=f(uj,a) for ∀a∈P.

Proof. According to the definition of equivalence class in
Definition 2, if ui,uj belong to one equivalence class for a set
of attributes P, uiPuj. According to the definition of indiscern-
ibility relation in Definition 2, f(ui,a)=f(uj,a) for ∀a∈P.

Theorem 2. Let mini and maxi be minimum and maxi-
mum of f(uj,ai)(j=1,2,…,n) respectively, f(uj,ai)(j=1, 2,…,n)
can be divided into g subsequences by equation (1)
loc=(int)((g‐1)(f(uj,ai)‐mini)/(maxi‐mini)) (1)
Where, loc denotes subsequence number of f(uj,ai).

Proof. If f(uj,ai)=mini, loc=0. If f(uj,ai)=maxi, loc=g‐1.
If f(uj,ai) takes other value, loc is between 0 and g‐1. So,
there are g subsequences in all.

Based on Theorem 1 and Theorem 2, concepts of quick
sort and insertion sort, skeleton of computing U/P is given.

Attribute Reduction Based on Sorting and Incremental Method The Open Cybernetics & Systemics Journal, 2015, Volume 9 1343

Sorting decision table by attribute subset P means sorting
decision table by every attribute in turn. For every attribute,
we find out its minimum and maximum firstly. Then, ap-
proximate location of each datum in ordered sequence is
computed according to the proportion relationship among the
datum, minimum and maximum. Next, size of each subse-
quence can be counted via datum’s location. Hence, we may
arrange data anew to divide awaiting processing sequence
into some subsequences and make data of the anterior subse-
quence less than the data of the posterior subsequence. Af-
terwards, every subsequence is sorted recursively. Thus, the
whole sequence can be sorted. In order to improve the com-
putational efficiency better, other sorting method can be used
when the size of subsequence is small. We suggest using
insertion sort to sort subsequence. When subsequence is not
very large, insertion sort is faster relatively. Then, we sort
decision table by other attributes in turn and analyze sorted
decision table to divide equivalence classes.

Let S=(U,A,V,f) be an awaiting processing decision ta-
ble. A row in decision table is a record and denoted by
Rj(j=1, 2,…,n). s! [n] is an array of structure which is used
to store sorted decision table. g is the number of subsequenc-
es and f[g] is an array which stores sizes of every subse-
quence. l is the max size of subsequence which may be sort-
ed by insertion sort. h[n] is an array which stores “head in-
formation” of subsequence whose size is greater than l; h[m]
stores subscript of the first element of the (m+1)-th subse-
quence whose size is greater than l in s! [n]. t[n] is an array
which stores “tail information” of subsequence whose size is
greater than l; t[m] stores subscript of the last element of the
(m+1)-th subsequence whose size is greater than l in s! [n].
h! [n] is an array which stores “head information” of subse-
quence whose size is not greater than l; h! [m!] stores the
subscript of the first element of the (m!+1)-th subsequence
whose size is not greater than l in s! [n]. t! [n] is an array
which stores “tail information” of subsequence whose size is
not greater than l; t! [m!] stores subscript of the last ele-
ment of the (m!+1)-th subsequence whose size is not great-
er than l in s! [n]. Let s! [b..e] be the subsequence which
needs to be sorted by the insertion sort. key is a structure
variable which is used temporarily. Let { 1u! , 2u! ,…, nu! } be
objects series obtained through sorting decision table by at-
tribute subset P. The i-th equivalence class is denoted by Li
and the set of Li is L. So, this algorithm (Algorithm 1) may
be described as follows.

Algorithm 1: Algorithm for computing U/P

Input: S=(U,A,V,f), U={u1, u2, …, un}, P!C and P={a1, a2,
…, ak}.

Output: U/P.

Step 1. Sort S by ai(i=1,2,…,k) in turn:

for(i=1;i<k+1;i++)

Step 1.1. Let f[g] be set zero:

for(r=0;r<g;r++) f[i]=0;

Step 1.2. For every ai(i=1,2,…,k), find out minimum and
maximum of f(uj,ai)(j=1,2,…,n), denoted by mini and maxi:

mini=f(u1,ai);maxi=f(u1,ai);

for(j=1;i<n+1;j++)

{if(f(uj,ai)<mini) mini=f(uj,ai);

if(f(uj,ai)>maxi) maxi=f(uj,ai);}

Step 1.3. Compute size of every subsequence:

for(j=1;i<n+1;j++)

{loc=(int)((g - 1)(f(uj,ai) - mini)/ (maxi - mini));

f[loc]=f[loc]+1;}

Step 1.4. Store location of each subsequence in s! :

m=0;m!=0

if (f[0]> l)
{h[0]=0;

t[0]= f[0] - 1;

m=m+l;}

 else

 { h! [0]=0;

t! [0]=f[0] - 1;

m!=m!+1;}

for(r=1;r<g;r++)

{if (f[r]> l)

{h[m]=f[r - 1];

t[m]=f[r - l]+f[r] - 1;

m=m+l; }

 else

 { h! [m!]=f[r - 1];

t! [m!]=f[r - l]+f[r] - 1;

m!=m!+1;}

f[r]=f[r - l]+f[r];}

Step 1.5. Place every record anew:
for(j=1;i<n+1;j++)

{loc=(int)((g - 1)(f(uj,ai) - mini)/ (maxi - mini));

s! [f(loc) - 1]=Rj;

f[loc]=f[loc] - 1;}

Step1.6. Divide subsequences whose size is greater than l
into g subsequences recursively:

While(m>0)

{Divide s! [h[m]..t[m]] into g subsequences re-
cursively;

m=m - 1;}

1344 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wang Biqing

Step 1.7. Use insertion sort to sort subsequences:

for(j=b+1;i<e+1;j++)

{key= s! [j]
w=j - l;

while(w>(b - 1)&& s! [w].ai>key.ai)

{ s! [w+1]= s! [w];

w=w - 1;}

s! [w+1]= key;}

Step 2. Get equivalence classes:

d=1;L1={ 1u! };

for (j=2;j<n+1;j++)

if(f(ju! ,ai)=f(1ju !" ,ai) for ∀ai) Ld=Ld∪{ ju! };

else {d=d+1;Ld={ ju! };}

Step 3. Return L.

In normal conditions, an attribute sequence only needs
several finite times division to get small subsequences for
the insertion sort. Therefore, time complexity of the first six
steps in step 1 is O(|U|) obviously. In the seventh step in step
1, size of every subsequence is l at most. In the worst case,
subsequence is non-increasing. Thus, comparison times is

!
"

=

1

1

l

i
i =l(l‐1)/2 by using insertion sort for one subsequence

and total comparison time is (|U|/l)l(l‐1)/2. Because l is a
constant, time complexity of the seventh step in step 1 is
O(|U|) too. As cycle number is O(|P|), time complexity of
step 1 is O(|P||U|). Time complexity of step 2 is also
O(|P||U|). Thus, time complexity of Algorithm 1 is O(|P||U|).
If P=C, time complexity for computing U/C is O(|C||U|). To
illustrate the above algorithm, let us consider the following
example.

Table 1 presents a decision table. We can compute
U/{a,b, c,d} by using Algorithm 1. Let g=3, l=4.

First, decision table is sorted by attribute a. U is divided
into three subsequences: {u1,u4,u5,u6,u12,u15}, {u3,u7,u8,u9,u11,
u14} and {u2,u10,u13}. Among them, size of the third subse-
quence is less than 4. So, it does not need further division.
Then, the first subsequence is divided into three subsequenc-
es: {u4,u6,u15}, ! and {u1,u5,u12}. The second subsequence
is divided into three subsequences: {u8, u9}, ! and
{u3,u7,u11, u14}. Now, all the subsequences are not greater
than 4 and the division is finished. Next, insertion sort is
used for each subsequence. In this way, sequence of U ob-
tained is {u15,u6, u4,u12,u5,u1,u9,u8,u14,u11,u7,u3,u13,u10,u2}.

Similarly, we can sort decision table by other attributes in
turn. Thus, sequence of U obtained through sorting decision
table by attribute b is {u9,u2,u3,u11,u1,u5,u10,u13,u8,u15,u7,u14,
u12,u4,u6}. Sequence of U obtained through sorting decision
table by attribute c is {u15,u8,u13,u10,u6,u4,u11,u3, u5,u1,u2,u14,
u7,u9,u12}. Sequence of U obtained through sorting decision
table by attribute d is {u7,u14,u2,u4,u6, u8,u9,u3,u11,u15,
u1,u5,u10, u13,u12}.

Table 1. Decision table.

U a b c d D

u1 2 2 3 3 0

u2 5 2 3 1 1

u3 4 2 2 2 2

u4 1 4 2 1 3

u5 2 2 3 3 4

u6 1 4 2 1 3

u7 4 4 4 1 0

u8 3 3 1 1 1

u9 3 1 4 2 4

u10 5 3 1 3 4

u11 4 2 2 2 3

u12 2 4 5 4 1

u13 5 3 1 3 0

u14 4 4 4 1 0

u15 1 3 1 2 4

Attribute Reduction Based on Sorting and Incremental Method The Open Cybernetics & Systemics Journal, 2015, Volume 9 1345

Finally, by step 3, U/{a,b,c,d} is {{u7,u14},{u2},{u4,u6},
{u8},{u9},{u3,u11},{u15},{u1,u5},{u10,u13},{u12}}.

4. AN ALGORITHM FOR FAST COMPUTING POSP(Q)
BY ADDING IDENTIFIER ATTRIBUTES TO SORTED
DECISION TABLES

On the basis of Algorithm 1, we present a fast algorithm
for computing POSP(Q). Firstly, idea of identifier is intro-
duced to distinguish the equivalence classes. Every equiva-
lence class can be identified by an identifier. Identifier at-
tributes are added to sorted decision tables and their values
are every object’s identifier of equivalence class. In order to
describe the method for computing POSP(Q) more distinctly,
Theorem 3 and Theorem 4 are given first. They are a theoret-
ical basis of Algorithm 2. Let I be an identifier attribute.

Theorem 3. If Y∈U/P and there exists f(ui,I)≠f(uj,I),
Y! POSP(Q) for ui,uj∈Y and i≠j.

Proof. As f(ui,I)≠f(uj,I), |Y/Q|≠1. So, Y! P X
(X∈U/Q). Therefore, Y! POSP(Q). □

Theorem 4. POSP(Q)=∪{[ui]P|[ui]P=[uj]P∧f(ui, I)=f(uj,
I)} for ui, uj∈U and i≠j.

Proof. Let U/P={[u]P|u∈U} and let U/Q={[u]Q| u∈U}.
Suppose u∈∪{[ui]P|[ui]P=[uj]P ∧f(ui, I)= f(uj, I)}. Then
there exists [us]P∈{[u]P|u∈U} and |[us]P/Q|=1 such that
u∈[us]P. So, there exists [ut]Q∈U/Q such that [us]P! [ut]Q.
According to properties of lower approximation,
P [us]P=[us]P and P [us]P! P [ut]Q. Thus, we can get

[us]P! P [ut]Q! POSP(Q). Thus, u∈POSP(Q). Therefore,
∪{[ui]P|[ui]P=[uj]P ∧f(ui,I)=f(uj,I)}! POSP(Q).

Suppose u∈POSP(Q). As POSP(Q)= !
Q/UX

XP
!

=

!
Uu

Q]u[P
!

, there exists [ut]Q∈{[u]Q|u∈U} such that u∈

P [ut]Q. Because P [ut]Q=∪{[u]P|[u]P! [ut]Q}, there exists
[us]P∈∪{[u]P|[u]P! [ut]Q} such that u∈[us]P. As [us]P

! [ut]Q, every object in [us]P has the same value of attribute
I. So, we get [us]P!∪{[ui]P|[ui]P=[uj]P∧f(ui,I)=f(uj,I)},
namely, u∈∪{[ui]P|[ui]P=[uj]P∧f(ui, I)=f(uj, I)}. Therefore,
POSP(Q)!∪{[ui]P|[ui]P=[uj]P∧f(ui,I) =f(uj,I)}.

On the basis of Theorem 3 and Theorem 4, Algorithm 2
may be described as follows.

Algorithm 2: Algorithm for computing POSP(Q) by add-
ing identifier attributes

Input: S=(U,A,V,f) and P,Q!A.

Output: POSP(Q).
Step 1. Get decision table SP sorted by attribute subset P

and SQ sorted by attribute subset Q according to the Algo-
rithm 1. Add attribute PI and attribute QI to SP. Add attribute
QI to SQ. Fill attribute PI of SP with identifiers of equiva-

lence classes of U/P. Fill attribute QI of SQ with identifiers
of equivalence classes of U/Q.

Step 2. Sort SQ by attribute subset P according to the Al-
gorithm 1 and then copy attribute QI of SQ to attribute QI of
SP.

Step 3. Scan SP and if all the objects in one equivalence
class of U/P have the same identifier of equivalence class of
U/Q, copy out the objects into POSP(Q). Otherwise, scan the
next equivalence class of U/P. When SP is scanned complete-
ly, algorithm is then finished.

Step 4. Return POSP(Q).
Step 1 of Algorithm 2 gets SP and SQ and its time com-

plexity is O(|A||U|). Time complexity of step 2 is also
O(|A||U|). Time complexity of step3 is O(|U|). Therefore,
time complexity of Algorithm 2 is O(|A||U|).

According to Algorithm 2, we compute POSP(Q) of the
following example. Let {{u1,u5},{u3,u4}, {u2,u8},{u6},{u7}}
be U/P of a certain decision table. Identifier of every
equivalence class is a,b,c,d,e respectively. Let
{{u1,u5,u6},{u3,u4}, {u2,u7},{u8}} be U/Q of the decision
table. Identifier of every equivalence class is 1,2,3,4 respec-
tively. From PI and QI in SP (as shown in Table 2),we can
judge that all the objects in {u2,u8} do not have the same
identifiers of equivalence classes of U/Q. So, they do not
belong to POSP(Q). Therefore,
POSP(Q)={u1,u5}∪{u3,u4}∪{u6}∪{u7}={u1,u3,u4,u5,u6,u7}.

Table 2. An example of algorithm 2.

U/P PI QI

u1 a 1

u5 a 1

u3 b 2

u4 b 2

u2 c 3

u8 c 4

u6 d 1

u7 e 3

If P=C and Q=D, Algorithm 2 can be used to compute
POSC(D). In this case, every object’s identifier is its value of
decision attribute D, and time complexity is O(|C||U|). There-
fore, POSC(D) of Table 1 is {u7,u14,u2,u8,u12,u4,u6,u9,u15}
computed by Algorithm 2.

5. AN INCREMENTAL ALGORITHM FOR FAST
COMPUTING POSP(Q) BY THE ATTRIBUTES IN-
CREASED

In the foregoing Algorithm 2, we compute U/P first, then
obtain POSP(Q) on the basis of U/P. In further research, we
find that POSP(Q) can be obtained step by step in the process
of computing U/P by the attributes increased. To explicate
this idea, Theorem 5 is given first.

1346 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wang Biqing

Theorem 5. In the process of computing U/P, three kinds
of equivalence classes may be produced. These equivalence
classes are respectively: equivalence class which contains
one object, consistent equivalence class, and inconsistent
equivalence class. Among them, the first kind and the second
kind belong to POSP(Q) definitely. The third kind needs to
be divided by remaining attributes to find whether there is a
proper subset which belongs to POSP(Q) or not.

Proof. According to Definition 6, if the first kind of
equivalence classes is divided by the remaining attributes,
they are also the first kind which contains one object. Obvi-
ously, they belong to POSP(Q). If the second kind of equiva-
lence classes are divided by remaining attributes, they are
divided into more consistent equivalence classes which con-
tain less objects and belong to POSP(Q). If the third kind of
equivalence classes are divided by remaining attributes,
some consistent equivalence classes may be produced and
they belong to POSP(Q).

Now, we can present an increment algorithm for fast
computing POSP(Q) by the attributes increased. In the pro-
cess of dividing equivalence classes by every attribute in
turn, the first kind and the second kind are added to POSP(Q)
and removed from universe. Thus, universe is compressed
gradually. Then universe is divided by the next attribute.
POSP(Q) is obtained after universe is divided by the last at-
tribute.

The above algorithm uses multi-way tree logic structure.
Root node is U. Other node contains an equivalence class, its
value of ai and kind identifier. Nodes in the same level have
the same attribute but have different values. Each leaf node
either belongs to POSP(Q) or does not belong to POSP(Q)
definitely.

It is noteworthy that universe is compressed gradually in
the above computing process. So, computation may finish
without dividing equivalence classes by last attributes.
Therefore, it can shorten the time of calculation and upgrade
efficiency.

Algorithm 3 may be described as follows.
Algorithm 3: Increment algorithm for computing

POSP(Q) by the attributes increased

Input: S=(U,A,V,f) and P,Q!A.

Output: POSP(Q).

Step 1. POSP(Q)=! , RootNode=U.

Step 2. for(i=1;i< k+1;i++)
If universe is not empty, divide equivalence class of each

node by the i-th attribute and build the (i+1)-th level nodes.
Then, divide equivalence class of each node by attributes in
Q and mark kind identifier. If it is the first kind or the second
kind of equivalence class, add it to POSP(Q) and remove it
from the universe.

Else, go to Step 3.
Step 3. Return POSP(Q).
In Algorithm 3, let R⊂P. According to Algorithm 1,

time complexity for computing POSP(Q) is
O((|P‐R|+|Q|)|U‐POSR(Q)|)=O((|A||U‐POSR(Q)|) on the
basis of POSR(Q). Obviously, it is more efficient than Algo-
rithm 2. This is because Algorithm 3 makes full use of the
existing POSR(Q) when it computes POSP(Q). So, the
amount of calculation is reduced. In fact, the above time
complexity is estimated for |P‐R| attributes in one step. If
time complexity is strictly estimated step by step according
to Algorithm 3, it will be smaller. We give the following
example which computes positive region of Table 1 to illus-
trate Algorithm 3 in Fig. (1). To make Fig. (1) more distinct,
values of ai and kind identifiers are not marked out. First,
root node U is build. Then, U is divided by attribute a and
the second level is obtained. Afterwards, each node in the
second level is divided by attribute b and the third level is
obtained. Among them, {u15}, {u12}, {u8}, {u9}, {u2} are the
first kind of equivalence classes and {u4,u6}, {u7,u14} are the
second kind of equivalence classes. They both belong to pos-
itive region. Remaining equivalence classes are divided by
attribute c and d. Thus, the fourth level and the fifth level are
obtained. But, there are no other objects which belong to
positive region. Therefore, POSC(D) of Table 1 is {u7, u14,
u2, u8, u12, u4, u6, u9, u15}. The result is the same as the result
obtained by Algorithm 2. But, Algorithm 3 is more efficient.

Fig. (1). An example of algorithm 3.

Attribute Reduction Based on Sorting and Incremental Method The Open Cybernetics & Systemics Journal, 2015, Volume 9 1347

6. AN INCREMENT ALGORITHM FOR FAST COM-
PUTING POSP(Q) BY THE OBJECTS INCREASED
BASED ON MULTIWAY TREE

Further, we can put forward another increment algorithm
for fast computing POSP(Q) by the objects increased which
is based on Algorithm 3.

Algorithm 4 may be described as follows.
Algorithm 4: Increment algorithm for computing

POSP(Q) by the objects increased based on multi-way tree
Input: S=(U,A,V,f), P,Q!A, multiway tree, POSP(Q),

u.
Output: new POSP(Q).
Step 1. Search the multi-way tree from root node by val-

ues of attributes for u.
If u does not belong to any leaf node, a new leaf node

which contains u is build under current node and u is added
to POSP(Q). Go to Step 3.

Else, go to Step 2.
Step 2. If the already existing objects in the leaf node are

in an inconsistent equivalence class, u does not belong to
POSP(Q). Go to Step 3.

If the already existing objects in the leaf node are in the
first or the second kind of equivalence class, compare their
values of attributes in Q with u.

Step 2.1. If they are the same, u is added to POSP(Q). Go
to Step3.

Else, Algorithm 3 is used to divide the leaf node. Kind
identifier and POSP(Q) are updated according to the final
result.

Step 3. Return to new POSP(Q).

In Algorithm 4, calculation amount of Step 1 is |U /a|+
|U! /b|+|U !! /c|+…<|A||U/P|, where U! , U !! are nodes in
search path. Calculation amount of Step 2 is |U /a|+|U! /b|+
|U !! /c|+…+|A||U0|<|A||U/P|+|A||U0|=|A|(|U/P|+|U0|), where
U0 is the node to which u belongs to. According to data sets

from UCI Repository of Machine Learning Databases, Ha-
berman’s Survival, mushroom and letter-recognition are in-
cluded in |U0|<< |U/P| generally. So, calculation amount of
Step 2 is far less than O(|A|(|U/P|+|U0|))=O(|A||U/P|). If P=C
and Q=D, time complexity of Algorithm 4 is far less than
O(|C||U/C|). In addition, compared with Algorithm 3, Algo-
rithm 4 is more efficient. Let u belong to the j-th node of the
i-th level. For Algorithm 4, calculation amount for searching
from the first level to the (i‐1)-th level is |U /a|+
|U! /b|+|U !! /c|+…. Clearly, it is less than |U|+|U|+|U|+… of
Algorithm 3. Calculation amounts for the j-th node of the i-
th level are the same for two algorithms. But Algorithm 3
needs to compute other nodes of the i-th level. Therefore,
Algorithm 4 gets higher efficiency.

For instance, object u16 is added to Table 1 in Fig. (2). Its
values of attributes are {1, 4, 2, 1, 0}. Search path is shown
as dotted line. Finally, because {u4, u6, u16} is an inconsistent
equivalence class, u4 and u6 are deleted from POSP(Q). The
updating is accomplished.

7. ATTRIBUTE REDUCTION ALGORITHM

The Algorithm 4 mentioned above can be used to com-
pute attribute reduction directly. An attribute reduction algo-
rithm based on incremental method is given as follows.

Algorithm 5: Attribute reduction algorithm based on in-
cremental method

Input: S=(U, C∪D,V,f).
Output: an attribute reduction R.
Step 1. Let R=! .
Step 2. for(i=1;i<=k;i++)
Step 2.1. C=C−{ai};
Step 2.2. Compute POSC(D) and POSC−{ai}(D) according

to the Algorithm 4. If POSC(D)≠POSC+{R}(D), R=R+{ai}.
Step 3 Return to R.
Algorithm 5 judges whether ai is necessary in turn. In

fact, it can be done randomly. As we can see from the steps

Fig. (2). An example of algorithm 4.

1348 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wang Biqing

of Algorithm 5, the algorithm consists of one layer of cycle
and number of cycles should be not more than |C| times. The
cost of every cycle is used to compute positive region. Be-
cause time complexity of Algorithm 4 is O(|C||U/C|), time
complexity of Algorithm 5 is O(|C|2|U/C|) accordingly. For
example, attribute reduction of Table 1 is {d} according to
Algorithm 5.

8. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, to test the performances of the above-
mentioned Algorithms, we used four decision tables from
UCI Repository of Machine Learning Databases. All the
experiments were carried out on a personal computer with
Windows 7, Intel Pentium(R) Dual CPU(1.86 GHz) and 2
GB memory.

First, we compared the time for computing POSC(D) of
each decision table by traditional algorithm referenced in [8],
algorithm referenced in [9], Algorithm 3 and Algorithm 4
included in this paper. The above four algorithms were de-
noted by A1, A2, A3, A4 respectively. We randomly chose
85% of the objects from each decision table set as base deci-
sion tables. The remaining 15% were the new objects. Ex-
perimental results can be seen from Table 3.

From Table 3, we can see that Algorithm 3 and Algo-
rithm 4 are more efficient than other algorithms. The more
objects there are, the more efficient Algorithm 3 and Algo-
rithm 4 are.

Then, Algorithm 3 and Algorithm 4 are compared while
adding different number of new objects. We randomly chose
691 objects from car decision table to be the base decision
table and randomly chose 173, 259, 346, 432, 519, 605, 691
objects in turn from the remaining 1037 objects to be incre-
mented. Experimental results can be seen from Fig. (3).

In Fig. (3), it can be seen that the computational time of
the two algorithms increases with the increasing size of the
data sets. When increment is less than 432, we can see that
the computational time of Algorithm 4 is obviously faster
than Algorithm 3. However, when increment is greater than
432, the gap between the computational time of the two al-
gorithms narrows gradually. This experimental result shows
that efficiency of Algorithm 4 decreases with increasing
size of the incremental data sets. For this reason, time inter-
val of the incremental algorithm for computing positive re-
gion should be relatively short in order to reduce the number
of new objects and enhance the update efficiency.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

173 259 346 432 519 605 691

Number of new objects

Co
mp
ut
at
io
na
l
ti
me
(m
s)

Algorithm 3

Algorithm 4

Fig. (3). Comparison of algorithm 3 and algorithm 4 when adding
different number of new objects.

0

20

40

60

80

100

120

140

Balance Monkey Cancer Car

Data sets

Co
mp
ut
at
io
na
l
ti
me
(m
s)

A

B

C

Fig. (4). Comparison of algorithm A, B and C.

To test the performances of Algorithms 5, we compared
three attribute reduction algorithms by the datasets men-
tioned above. Algorithm in reference [6], algorithm in refer-
ence [7] and Algorithm 5 in this paper are denoted by A, B, C
respectively. Experimental results can be seen from Fig. (4).

From Fig. (4), we can see that Algorithm 5 is more effi-
cient than other algorithms. The advantage is more obvious
with datasets’ enlargement.

Table 3. Comparison of four algorithms for computing POSC(D).

Decision Table
Number of

Objects
Number of Condi-

tion Attributes
Number of Deci-
sion Attributes

Computational Time (ms)

A1 A2 A3 A4

Monkey 556 17 1 243.109 21.156 2.312 0.332

Balance 625 4 1 11.227 3.184 0.309 0.172

Cancer 683 9 1 223.171 12.597 1.460 0.207

Car 1728 6 1 1432.138 19.145 1.794 1.002

Attribute Reduction Based on Sorting and Incremental Method The Open Cybernetics & Systemics Journal, 2015, Volume 9 1349

9. CONCLUSION

In this paper, first the rough set theory was deeply re-
searched. Then aiming at the shortcomings of traditional
algorithms for computing positive region and centering on
the important concept of positive region, some new algo-
rithms including incremental algorithms for fast computing
positive region were proposed. Especially, the algorithm
based on multi-way tree proved to be the most efficient. Its
time complexity for computing POSC(D) is far less than
O(|C||U/C|). Then, an attribute reduction algorithm based on
it was introduced, its time complexity being O(|C|2|U/C|).
Theoretical analysis and experimental results indicate that it
is superior to other traditional algorithms. As computation of
attribute reduction is basic, further researches should consid-
er other significant algorithms for rough set based on the
work of this paper and its application to decision support
combined with other uncertainty methods. Another interest-
ing trend of research can be focused on application to pattern
recognition.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] Z. Pawlak, “Rough sets,” International Journal of Computer and

Information Science, vol. 11, no. 5, pp. 341-356, 1982.
[2] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about

Data, Dordrecht: Kluwer Academic Publishers, 1991.
[3] J. Jelonek, K. Krawiec, and R. Slowinski, “Rough set reduction of

attributes and their domains for neural networks,” International
Journal of Computational Intelligence, vol. 11, no. 2, pp. 339-347,
1995.

[4] J. L. Du, Z. X. Chi, and W. Zhai, “An improved algorithm for
reduction of knowledge based on significance of attribution,” Mini
Micro System, vol. 24, no. 6, pp. 976-978, 2003.

[5] W. J. Liu, Y. D. Gu, Y. B. Feng, and J. Y. Wang, “An improved
attribute reduction algorithm of decisiontable,” Pattern Recognition
and Arti- ficial Intelligence, vol. 17, no. 1, pp. 119-123, 2004.

[6] S. H. Liu, Q. J. Sheng, and B. Wu, “Research on efficient algorithm
for rough set method,” Chinese Journal of Computers, vol. 26,
no. 5, pp. 524-529, 2003.

[7] Z. Y. Xu, Z. P. Liu, and B. R. Yang, “A quick attribute reduction
algorithm with complexity of max(O(|C||U|), O(|C|2|U/C|)),” Chi-
nese Journal of Computers, vol. 29, no. 3, pp. 391-399, 2006.

[8] G. Y. Wang, Rough Set Theory and Knowledge Acquisition, Xi’an:
Xi’an Jiaotong University Press, 2001.

[9] Q. Liu, Rough Set and Rough Reasoning, Science Press, Beijing,
2001.

[10] D. Y. Ye, and Z. J. Chen, “Some properties of positive regions in
Rough Set,” Journal of Fuzhou University, vol. 30, no. 5, pp. 521-
523, 2002.

[11] H. Ge, L. S. Li, and C. J. Yang, “Quick algorithm for computing
core attribute,” Control and Decision, vol. 24, no. 5, pp. 738-742,
2009.

[12] W. X. Zhang, W. Z. Wu, and J. Y. Liang, Rough Set Theory And
Methods, Science Press, Beijing, 2001.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Wang Biqing; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

