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Abstract:  The Hamiltonian system in quasi-static problems of 3D viscoelastic solids has been introduced in this paper. 
Based on the principle of elastic-viscoelastic correspondence, the problem of solving partial differential equations is re-
duced to finding general eigensolutions of the dual equations and all the analytical fundamental eigensolutions and their 
corresponding Jordan forms are derived. After the establishment of symplectic adjoint relation, the final solution is ex-
pressed by linear combinations of the general eigensolutions, and the combinations are determined by the given boundary 
conditions. For its applications, problems of various boundary conditions and the inhomogeneous governing equations are 
discussed. 
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1. INTRODUCTION 

Recently,  substantive computational techniques have 
been found in the literature to solve engineering problems 
associated with viscoelastic solids and structures [1]. In these 
kinds of research studies, the Laplace transform method is 
often used as the problems of time domain can be successful-
ly transformed into those of Laplace domain [2], and thus 
further discussion can be carried out in the Laplace domain. 
Unfortunately, researchers have found that the inverse trans-
formation is usually very difficult to deal with. In fact, for 
many cases, solutions of inverse transformation cannot be 
expressed in an analytical way, and thus numerical inverse 
transformation method has been developed as an important 
research subject [3, 4]. On the other hand, the time-
dependent stress-strain relations of viscoelasticity are often 
expressed by partial differential equations. This leads to the 
fact that analytical solutions are very difficult to be found. 
Therefore, numerical approaches are often considered. 
Among these techniques, the finite element method and the 
boundary element method are the most popular ones [5, 6].  

In mechanics of elastic solids, Zhong [7] proposed the 
famous Hamiltonian system method. As dual variables in-
cluding displacement components and stress components are 
used as  fundamental variables, the problem of high order of 
partial differential equations is successfully reduced to that 
of lower ordinary differential ones. Moreover, the variable 
separation method is applied to solve the governing equa-
tions. Therefore, the original problem is further transformed 
into eigenvalue and eigensolution problems, and according-
ly, all general solutions are obtained in the series. 

However, as for viscoelastic problems, the Hamiltonian 
system method cannot be directly used because of the exist-
ence of the energy dissipation. It is to be noticed that by us-
ing the Laplace transform, the stress-stain relations of visco 
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elasticity are the same as those of elasticity in mathematics 
form. Xu et al. [8] analyzed two-dimensional problems of 
viscoelastic solids with the use of Laplace transform and the 
Hamiltonian formulation, and discussed a numerical method 
to deal with problems of displacement or stress boundary 
conditions and non-homogeneous governing equations. 

In the present research, we  studied the time-dependent 
property of viscoelastic solids and characteristic of the Ham-
iltonian formulation, and then noticed that the Hamiltonian 
system can also be applied to three-dimensional viscoelastic 
solids in the Laplace domain. We found that general solu-
tions of the governing equation involve two parts: zero ei-
gensolutions and non-zero eigensolutions. Zero eigensolu-
tions are so-called Saint-Venant solutions for traditional ten-
sional, torsional and bending problems. Non-zero eigensolu-
tions are local effect solutions which play an important role 
in stress concentration problems as local effects near the 
boundary cannot be neglected for this case. In the numerical 
example, a typical boundary condition problem is discussed 
using the Hamiltonian system method, and the final solution 
is obtained by a certain linear combination of eigensolution 
series. The results show the creep property of viscoelastic 
materials when external forces are loaded on the boundary. 
Besides, the example well demonstrates that the Hamiltonian 
system provides an efficient numerical method for viscoelas-
tic materials and structures, and is very suitable for engineer-
ing problems related with the complex boundary conditions.  

2. FUNDAMENTAL PROBLEM  

The coordinate system ( , , )r z!  is selected to study a cir-
cular cylinder. The z-axis is along the longitude direction, 
and the origin is located at the central point of the bottom. 
We suppose that the behavior of the material is governed by 
the standard viscoelastic model shown in Fig. (1), which 
consists of a spring and a Kelvin model successively. Gener-
ally, the spring and Kelvin type represent the responses of 
instantaneous elasticity and the viscid delay, respectively. To 
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simplify the theoretical derivation, the bulk behavior is as-
sumed to be time independent in this research. 

 
Fig. (1). The standard viscoelastic model. 

The stress-strain relation of this viscoelastic material can 
be written as: 
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Where, r is the position vector, t is time, mm!  and mm!  are 

the volumetric stress and strain, and ijs , ije  are the deviatoric 
component tensors. According to the correspondence princi-
ple, the stress-strain relations (1) can be expressed by the 
following algebraic form: 
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in which, s is the Laplace integral parameter, and a varia-
ble with an over bar represents its counterpart in the Laplace 
domain. The relaxation shear modulus is: 
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The Lagrange function is: 
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here * *2 / 3K G! = " , and a variable with an over dot repre-
sents differentiation with respect to z. To convert the de-
scription to Hamiltonian system, the displacement compo-
nents are described in vector form 
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Applying the minimum potential energy principle 
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 dual equations are obtained under the Hamiltonian sys-
tem  
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and the differential operator H is 
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here 1/r r! = " + , 
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3. GENERAL SOLUTIONS 

Suppose the lateral boundary is free of stress; then the so-
lution can be described as  

( ) z
j

jer µ!"" ,=            (11) 

Using the variable separation method, we write the solu-
tion as 

( ) ( ), ,j j jr r! " µ ! "=H          (12) 

in which, jµ  and j!  are eigenevalues and eigensolutions 

respectively. In the case of 0=µ , the governing equation 
(12) is degenerated into 

0! =H              (13) 

One can easily find the following fundamental solutions: 
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Besides the fundamental eigensolutions, there exist dif-
ferent orders of Jordan form solutions. They are governed by 
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Considering Eq. (14), we get the first order Jordan form 
solutions: 
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here * * * * * * */ [2( )], 2 / 2(1 )v G E G v! != + = + , 
and the function !  satisfies the Neumann problem 
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For Jordan form eigensolutions, their corresponding final 
solutions are:  
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Two solutions of the second Jordan form can satisfy the 
Jordan form equation: 
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The third order  Jordan form solutions are: 
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in which the functions ( 1, 2)i i! =  are the solutions of the 
Neumann problem 
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It can be easily proven that no other solutions can satisfy 
Eq. (15), and thus  all zero eigensolutions are achieved. 
Based on the property of the Hamiltonian operator matrix H, 
the integral product between the eigensolutions is defined as 
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For the convenience of discussion, zero eigensolutions 
above are rewritten as 
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Where, (0) (3)
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sified into two groups, which satisfy the following adjoint 
symplectic ortho-normalization relations: 
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An arbitrary vector can always be expanded by the com-
bination of the eigensolutions  
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4. BOUNDARY CONDITIONS  

Simply by applying a variable substitution method to the 
governing equations (8),  the inhomogeneous lateral condi-
tion can be transformed into a homogeneous one. To achieve 
this goal, we introduce  
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Where 
T** ** ** ** ** ** **

1 2 3, , , , ,u v w p p p! " #= $ %      (30) 

Supposing **! satisfies the inhomogeneous conditions,  

the new variables *!  must satisfy the homogeneous lateral 
boundary conditions. Taking the circle cylinder for example, 
the inhomogeneous boundary conditions in the Hamiltonian 
system are: 
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Then the lateral boundary conditions become homogene-
ous, which are 
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However,  dual Eq. (12) should be rewritten as 
* *! != +H f!             (35) 

Where the non-homogeneous term 
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here 9 2 1/a a a=  and 10 11/a a= . Thus the inhomogeneous 
lateral boundary condition is transformed into the problem of 
finding a particular solution of the inhomogeneous equation. 
Considering the adjoint relationships of the symplectic or-

thogonality, the inhomogeneous term is developed in the 
time domain: 
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the special solution is also described by 
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where the coefficients are to be determined. Considering the 
governing equations (35), we have 
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The solutions are 
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5. NUMERICAL RESULTS AND DISCUSSION 

As an example, we suppose a circle cylinder under lateral 
boundary conditions: 

sin ( 1)r r! "= # =            (41) 

There are no external forces loaded at both the ends. In 
the numerical calculation, the Poisson's ratio is taken to be 
0.25.  
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Fig. (2). The deformation of the free end. 

It is clear that the example belongs to a kind of bending 
problem. Using the proposed method of this research,  the 
final solution can be easily obtained. According to the nu-
merical results, the deformation along radial direction is giv-
en in Fig. (2). It can be seen from the figure that the defor-
mation at the free end increases with time dramatically, 
which explains that viscoelastic materials have the property 
of displacement creep. Besides, at time t=0, certain initial 
deformation can be found from the figure. This phenomenon 
suggests that the material has some initial response to exter-
nal loads. 

CONCLUSION 

Considering the principle of elastic-viscoelastic corre-
spondence and the time-dependent character of viscoelastic 
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solids, we studied three dimensional viscoelastic problems 
under the Hamiltonian system. The variable separation 
method was applied to reduce the high order partial differen-
tial governing equations, and therefore the final solution can 
be described by series of eigensolutions. In fact, all solutions 
of traditional Saint-Venant problems including tension, tor-
sion and bending deformations can be obtained by combina-
tions of the eigensolutions. When the inhomogeneous 
boundary conditions are considered, the variable substitution 
method is applied, and accordingly the problem is success-
fully transformed into solving inhomogeneous governing 
equations. According to the adjoint symplectic orthogonality 
relations, the special solutions can be achieved analytically 
by using the technology of the eigensolution expansion. 
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