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Abstract: Compressed sensing theory breaks through the limit that two times the bandwidth of the signal sampling rate 
in Nyquist theorem, providing a guideline for new methods for image acquisition and compression. For still images, block 
compressed sensing (BCS) has been designed to reduce the size of sensing matrix and the complexity of sampling and 
reconstruction. However, BCS algorithm assigns the same sampling rate for all image blocks without considering the 
structures of the blocks. In this paper, we present an adaptive sampling rate assignment method for BCS of images using 
wavelet transform. Wavelet coefficients of an image can reflect the structure information. Therefore, adaptive sampling 
rates are calculated and assigned to image blocks based on their wavelet coefficients. Several standard test images are 
employed to evaluate the performance of the proposed algorithm. Experimental results demonstrate that the proposed 
algorithm provides superior performance on both the reconstructed image quality and the visual effect. 
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1. INTRODUCTION 

 With the rapid development of information technology, 
the demand for image information is growing. Meanwhile, 
how to store, process and transmit large amounts of image 
data has become a serious problem. Traditional still image 
compression standard [1, 2]: JPEG and JPEG2000 can 
remove image spatial redundancy and obtain a large 
compression ratio. However, there are some drawbacks: (1) 
Based on the Nyquist sampling theorem, the sampling rate 
can’t be less than two times of the signal bandwidth. It may 
be difficult for a hardware system to meet a high sampling 
rate. (2) All the image transform coefficients are calculated, 
but only a few are retained. This leads to a waste of data 
computing and memory resources. (3) During data 
transmission, missing coefficients will affect the image 
reconstruction quality. 

In 2006, E. Candes, D. Donoho and T.Tao proposed the 
Compressed Sensing (CS) theory [3,4,5]. Under certain 
conditions, a signal can be recovered from far fewer samples 
than required by the Nyquist sampling theorem. CS theory 
provides a breakthrough for image compression. However, 
for two-dimensional images, CS algorithm faces high 
computational complexity and large memory access. In order 
to solve these problems, Lu Gan proposed block-based 
compressed sensing (BCS) [6]. In BCS, an image is divided 
into blocks and sampling and reconstruction are conducted in  
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a block-by-block manner. Therefore, the computational 
complexity of sampling and reconstruction are greatly 
reduced.  

The BCS algorithm assigns the same sampling rate for all 
blocks within an image. However, due to piecewise smooth 
regions in an image, some image blocks may contain only a 
little information. For example, texture blocks contain more 
information (e.g., edges) than smooth blocks. Blocks with 
little information can be reconstructed by fewer observations. 
Therefore, it is not necessary to assign the same sampling 
rate for all image blocks. The image structural information 
can be utilized, under the premise of total sampling rate 
unchanged, to adaptively allocate sampling rate for different 
image blocks. 

Wavelet transform is an efficient image representation 
method that has been extensively used in image compression. 
It can capture the edge information in different scales and 
orientations. In our proposed adaptive sampling rate 
assignment method, wavelet transform coefficients of an 
image is used to analysis the structure information of each 
image block and adaptively allocate sampling rate for each 
block. The proposed adaptive sampling rate assignment 
method for BCS can improve the reconstruction performance 
significantly. The rest of this paper is organized as follows. 
Section 2 gives a brief review of CS and BCS. Section 3 
describes the proposed adaptive CS algorithm of still images 
based on wavelet coefficients. Experimental results are given 
in Section 4. Finally, Section5 is the conclusion. 
  



 

 

2. COMPRESSED SENSING 

2.1. The basic principles of compressed sensing 

Consider a real-valued signal N
x R! , it is sparse with 

respect to a transform Ø . Then x !"=   and 

0|| || K N! = << (Where 0|| ||!  represents the number of 
non-zero coefficient of vector ! ), the coefficient 
vector! can be reconstructed with high probability from its 
linear and non-relevant projections y. 

y= x=A! "                             (2-1) 

Here, M
y R! is the vector of projections constituted by a 

small amount of linear, non-relevant measured values. 
M N
R! "

# is a measurement matrix and 
M N� . M N

A R
!

" is on behalf of !" , called sensing 
matrix. Under normal circumstances, <K M N� . 

In essence, y can be regarded as a linear combination of all 

the columns of A corresponding 0
i

! " . Formula (2-1) 
actually implements a dimensionality reduction process, and 
can also be considered a data compression method. 
Compared to the dimensionality reduction process, we are 
more concerned about how to recover !  from the 
coefficient vector y . That is solving the following equation: 

0min || || ,   s.t.  y=A
!

! !            (2-2) 

Since Eq. (2-1) is a group of underdetermined linear 
equations, solving (2-2) is NP-hard. But under the premise of 
! being sparse, if A  satisfies the restricted isometry 
property (RIP) [5], then the problem can be solved by 
iterative greedy algorithms, such as OMP [7], StOMP [8] 
and CoSaMP [9]. After obtaining! , the original x can be 
reconstructed by x=!" . 

2.2. Block compressed sensing 

When CS is used to process image signal, the size of 
measurement matrix M N

R! "
#  will be very large, N  

typically is between 4
10 and 6

10 , making the storage and 
computing very challenging. In order to solve this problem, 
Lu Gan proposed a compressed sensing method based on a 
block-based sampling strategy [6]. 

BCS procedure is described as follows. Consider an image 
with

r c
N I I= !  pixels in total, the image is divided into 

small non-overlapping blocks with size of B B!  each. Let 

m
x  represent the vectorized signal of the m-th 

block, 2
1, 2 , /m n n N B= =L , then each block is 

sampled with the same measurement matrix
B

! . The 

corresponding output CS vector 
m
y  can be written as 

 
m B m
y x!=           (2-3) 

where 
B

! is a matrix with size of 2

B
M B! , and 

2
,0 1

B
subrate BM subrate= ! " "# $% & . For the whole 

image, the equivalent sampling operator !  in (2-1) is thus a 
block diagonal matrix taking the following form 

0 0

0

0

0 0

B

B

B

!" #
$ %!$ %! =
$ %
$ %

!& '

L

M

M O

L
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Compared with compressed sensing based on the whole 
image, BCS is faster; however, it poses serious blocking 
artifacts. To remove the blocking artifacts, BCS-SPL [10] 
introduces Wiener filtering into the image reconstruction 
process, and gradually improves the quality of reconstruction 
by iterative process. A BCS-SPL variant named MH-BCS-
SPL was introduced in [11] to further improve the BCS-SPL 
using a post-processing procedure where multihypothesis 
prediction strategy was used. The multihypothesis prediction 
strategy was also employed for hyperspectral image 
reconstruction [12] and single-image super-resolution [13]. 
Given the computational efficiency and good reconstruction 
performance of BCS-SPL, this paper adopts the BCS-SPL as 
the CS reconstruction method and investigates the adaptive 
sampling rate assignment for the BCS-SPL. 

3. ADAPTIVE COMPRESSED SENSING 
ALGORITHM 

3.1. Overall framework of adaptive compressed sensing 
method 

 Different from traditional imaging systems, CS belongs 
to the sampling process information, and each CS 
measurement contains global information of the image block. 
The amount of measurements contain useful information has 
a large impact on the reconstruction result. The original BCS 
algorithm assigns the same sampling rate for all image 
blocks. However, when an image is divided into small 
blocks, the different image blocks contain different amount 
of information. Blocks containing little information can be 
reconstructed by fewer observations than those containing 
more information. Thus it is possible to adaptively allocate 
different sampling rates for different blocks to improve the 
BCS-SPL reconstruction performance. 

The framework of our proposed adaptive compressed 
sensing algorithm for images is presented in Figure 1. It 
includes adaptive sampling rate assignment, CS sampling, 
quantization, coding and CS reconstruction. In this paper, we 
focus on the part of adaptive sampling assignment for 
different blocks. 

3.2. Adaptive sampling rate assignment using wavelet 
transform 

Wavelet analysis is a time - frequency analysis method of 
signal. It has the characteristics of multiscale analysis. In 
both time and frequency domain, wavelet analysis has the 
ability to characterize local signal characteristics. It has a 



 

 

high frequency resolution and a low time resolution in the 
low frequency portion and a low frequency resolution and a 
high time resolution in the high frequency portion. It is 
particularly suitable for analyzing and detecting transient 
abnormality signal in the normal signal. 

After wavelet transform, the transform coefficients of an 
image can be categorized into low frequency coefficients and 
high frequency coefficients. In fact, the low frequency 
coefficients and high frequency coefficients are two different 
types of signals. Low-frequency coefficients epitomizes the 
image energy information, on the other hand, the high-
frequency coefficients save rich detail information of an 
image. Therefore, we can observe and analyze an image by 
its wavelet coefficients, as shown in Figure 2. 

This paper presents an adaptive compressed sensing 
algorithm of still images based on wavelet coefficients. For 
easy operation, we use a discrete stationary wavelet 
transform (SWT). Therefore, our algorithm is named SWT-
BCS-SPL. Compared with the conventional discrete wavelet 
transform (DWT), SWT has the “translation invariance” 
property[14]. The number of wavelet coefficients of the sub-
band layers after decomposition is equal to the number of 

original image pixels, so we can apply the SWT on the 
whole image, then divide the image into blocks in the 
transform domain. Finally, we calculate the statistical results 
of absolute values of the vertical and diagonal high-
frequency coefficients of each block. The sampling rate 
allocation is determined according to the absolute value of 
high-frequency coefficients of each block. The detailed 
process is shown in Figure 3. 

The value of the sampling rate SR is known� the size of 
block is B B! , the number of image blocks is n . Thus, the 
total number of measurements can be obtained as 

2
M SR B n= ! ! . In this paper, the sampling upper bound 
is denoted as 2

0.9upper B= ! . In order to guarantee the 
basic quality of the reconstructed image, each block is 
assigned with the same fixed base sampling 
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Fig.1. Overall framework of the proposed adaptive compressed sensing method 

 
Fig.2. The discrete stationary wavelet transform of the Lena 
image 
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rate FSR W SR= ! , where W  is a parameter that decides 
a fixed sampling rate. If W is larger� the fixed sampling rate 
for the blocks is higher, and 0 1W! ! . According to the 
fixed sampling rate FSR , the fixed measurement number of 

each image block can be determined by
i

FSR M
FM

n

!
= . 

After applying discrete stationary wavelet transform on the 
original image, the coefficient image are divided into blocks. 
The statistical results of absolute values of the high-
frequency coefficients of each block, denoted as ( )icoef x , 

are calculated and the percentage of ( )icoef x  with respect 

to the whole image can be obtained by 

1

( )

( )

i
i n

i

i

coef x
P

coef x
=

=

!
. 

We can then compute the total number of measurements for 
each block according to ( )

i i i i
AM FM P M nFM= + ! . 

If the total number of measurements for a block is larger 
than the upper bound, the excess measurements are 
accumulated for each block to obtain the total excess 
measurements for the whole 
image, ( )iS S AM upper= + ! .The excess measurements 

are distributed equally to blocks that have iAM upper< . 
This process may be repeated until all the blocks having 
sampling measurements are not out of the sampling upper 
bound. Here, the final number of measurements for each 
block is denoted as

i
AM . 

According to the sampling number of each block
i

AM , 
the corresponding random measurement matrix is 
constructed and CS measurement is performed. Since the 
decoder needs to reconstruct the measurement matrix, the 
information of matrix structure needs to be transmitted. 
Compared with the original BCS, the adaptive compressed 
sensing algorithm needs to transmit the sampling number of 
each block to the decoder as well. Therefore, the bits cost 
will increase. 

4. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the 
proposed adaptive compressed sensing algorithm based on 
wavelet coefficients (SWT-BCS-SPL), and compare it with 
the original BCS-SPL algorithm. For a more comprehensive 
evaluation of the reconstructed image quality, in addition to 
the commonly used PSNR, this paper uses structural 
similarity index measurement system (SSIM) [15] as an 
additional image quality evaluation criterion. 

Six test images are used in our experiments including 
Lena, Barbara, Goldhill, Barbara2, Boat and Cameraman, as 
shown in Figure 4. All the images have the size of 
512 512!  pixels. The experiments are conducted using 
MATLAB v7.8 (R2009a) on a PC with an Intel(R) 
Core(TM)2 Duo CPU T6670 at 2.19GHz and 2-GB of RAM. 
The sparse transform in BCS-SPL is the wavelet transform. 
It should be noted that all reconstruction quantity evaluations 
(PSNR and SSIM) are averaged over ten independent trials, 
since the performance of reconstruction varies due to the 
randomness of the sampling matrix. 

   
Lena Barbara Goldhill 

   
Barbara2 Boat Cameraman 

Fig.4. Test images in our experiments 



 

 

4.1. Parameter tuning 

In order to analyze effect of the two main parameters in 
the adaptive sampling algorithm, block size B and the fixed 
sampling rate allocation parameter W, we select Lena image 
as the test image for the parameter tuning experiments. 
Table 1. The relation between the PSNR of the reconstructed 

image and the block size 
 

 Under the experimental condition that the sampling rate 
is 0.5 and the fixed sampling rate allocation parameter W is 
0.5, Table 1 shows the relation between the PSNR of the 
reconstructed image and the block size. It can be observed 
that when block size is 8 × 8, the image reconstructed by 
SWT-BCS-SPL algorithm achieved the highest PSNR value. 
Therefore, in our experiments, the block size B is set to 8 × 8. 

Next, we analyze the parameterW . We set the sampling 
rate to 0.5 and block size B to 8×8, a set of W  are tested. 
Figure 5 shows the relation between the PSNR of the 
reconstructed image and the fixed sampling rate allocation 

parameterW . It is obvious from the figure that, with the 
fixed sampling rate allocation parameter increases, the PSNR 
of the reconstructed image by SWT-BCS-SPL algorithm 
decreases. This also indicates that the adaptive sampling rate 
allocation can improve the quality of the reconstructed image. 
In this paper, the parameterW  is set to an intermediate value 
of 0.5. 

SWT-BCS-SPL
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 Fig.5.the relation between PSNR of the reconstructed image and 
parameter W  

4.2. Comparison with BCS-SPL 

The performance (PSNR and SSIM) of BCS-SPL and the 
proposed SWT-BCS-SPL at different sampling rates are 
listed in Table 2. In the table, the best performance is 
emphasized by bold-faced font. It can be observed that 
SWT-BCS-SPL achieved improvements at almost all the 
sampling rates. These comparisons highlight the role of 

4×4 8×8 16×16 32×32 
Algorithm 

PSNR PSNR PSNR PSNR 

SWT-BCS-SPL 38.15  38.73  38.48  38.26  

 Sampling rate 

 0.1 0.2 0.3 0.4 0.5 

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

 Lena 

BCS-SPL 26.37 0.79 30.02 0.87 32.16 0.90 34.10 0.93 35.65 0.94 

SWT-BCS-SPL 25.78 0.79 31.29 0.88 34.29 0.91 36.83 0.94 38.73 0.95 

 Barbara 

BCS-SPL 22.04 0.65 23.65 0.74 24.77 0.80 26.15 0.85 27.51 0.89 
SWT-BCS-SPL 20.90 0.63 24.29 0.76 27.21 0.84 30.55 0.90 32.67 0.92 

 Goldhill 

BCS-SPL 26.06 0.67 28.49 0.77 30.07 0.83 31.47 0.87 32.73 0.90 

SWT-BCS-SPL 23.69 0.66 28.63 0.78 30.36 0.83 32.42 0.87 33.98 0.90 

 Barbara2 

BCS-SPL 23.21 0.63 25.29 0.76 26.94 0.83 28.67 0.88 30.26 0.91 
SWT-BCS-SPL 22.86 0.64 26.18 0.78 28.94 0.85 31.48 0.90 33.33 0.93 

 Boat 

BCS-SPL 23.97 0.66 27.11 0.77 29.07 0.83 30.81 0.87 32.25 0.90 
SWT-BCS-SPL 23.76 0.67 28.25 0.79 30.63 0.84 32.69 0.88 34.07 0.90 

 Cameraman 

BCS-SPL 24.08 0.81 28.01 0.90 30.60 0.94 33.11 0.96 34.89 0.97 
SWT-BCS-SPL 24.65 0.83 30.57 0.92 34.76 0.95 39.13 0.97 42.13 0.98 

Table 2. Performance comparison between BCS-SPL and SWT-BCS-SPL at different sampling rates  
 



 

 

adaptive sensing. The results demonstrate that the proposed 
algorithm can improve the quality of the reconstructed image. 
The results show that the improvement of texture detail-rich 
images (e.g. Barbara and Barbara2) is more obvious. For 
Barbara image, the maximal PSNR gain reaches 5.16 dB and 
the average one is 2.3dB. For Barbara2 image, the maximal 
PSNR gain is 3.07 dB and the average one is 1.68dB. When 
the total sampling rate is rather low (e.g. SR=0.1) the 
advantage of SWT-BCS-SPL is not very clear or performs 
worse than BCS-SPL. The reason, we argue, is that since the 
total sampling number is very small, after adaptive allocation, 
the sampling number of each block is very similar, therefore, 
SWT-BCS-SPL is not effective. 

To better illustrate the improvement, a visual comparison 
is provided in Fig. 6. From the figure, it can be seen that the 
details of three image recovered with SWT-BCS-SPL is 
more clear than BCS-SPL. It is because in SWT-BCS-SPL 
relatively high sampling rates are assigned to the edge and 
rich texture blocks and low sampling rates are assigned to 
the smooth blocks. 

5. CONCLUSION 

In this paper, an adaptive compressed sensing algorithm 
of still images based on wavelet coefficients was proposed to 
improve the reconstruction performance of the block-based 
compressed sensing (BCS). The algorithm utilized wavelet 
coefficients of each image block as a sampling rate 
allocation criteria to adaptively assign sampling rates for 
each block. High sampling rates were assigned to the blocks 
containing detailed information (e.g., edges) and low 
sampling rates were assigned to the blocks containing less 
information (e.g., smooth background). Compare with the 
original BCS with uniform sampling rate for all the block, 
the experimental results demonstrated a significant 
improvement in numerical and geometrical accuracy over the 
traditional block compressed sensing. However, since 
wavelet transform is complex, the computational complexity 
of the algorithm is increased. In our future work, a 
computationally efficient sampling rate assignment strategy 
will be investigated. 

 

 BCS-SPL SWT-BCS-SPL 

   

   

   
Fig.6. Visual comparison of three reconstructed 512 × 512 images (shown in detail) for a sampling rate of SR = 0.3 
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