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Improved Bayesian Saliency Detection Based on BING and Graph Model 
Lv Jianyong, Tang Zhenmin and Xu Wei 

School of Computer Science and Engineering, Nanjing University of Science and Technology,  
Nanjing, Jiangsu, 210094, P.R. China 

Abstract: Saliency detection plays an important role in many computer vision applications. The traditional Bayesian 
based saliency model using convex hull to circle a coarse salient region, which is inaccurate and unstable. To address this 
problem, we propose an improved Bayesian framework based saliency method. Firstly, we utilize the BING (Binarized 
Normed Gradients) method to generate the coarse conspicuity map. Then, we construct a graph model after SLIC 
superpixel image abstraction, to refine the initial conspicuity map. This is followed by the spatial information based 
weighting, to produce the final prior map. Secondly, after adaptive threshold, the observation likelihood map is computed 
by color histogram. Finally, these two maps are combined through Bayesian formula. Experimental results on two 
benchmark datasets MSRA-1000 and SOD show that our improved method is superior to 13 state-of-the-art alternatives, 
especially the previous Bayesian saliency models. 
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1. INTRODUCTION 

 Human visual system (HVS) has the powerful capability 
to automatically identify the potential most interesting region 
in complex scene. How to simulate the mechanism of HVS 
with a computer, has been investigated by experts from 
multiple research field, including neuroscience, psychology 
and computer vision. A variety of computational saliency 
methods are proposed to effectively detect the salient region 
which attracts humans’ attention. As the saliency results can 
be applied to many tasks, such as object detection, image 
retargeting, video summarization, etc, saliency detection has 
become an active topic in recent years [1]. 
 Visual saliency analysis can be divided into two different 
directions: eye fixation prediction [2] and salient object 
detection [3]. The former aims to predict a few human visual 
attention locations and the latter focuses on detecting the 
whole meaningful generic object. In this paper, we do 
research on the pure computational, data-driven, bottom-up 
salient object detection methods [4]. 
 Some local contrast based saliency models estimate the 
saliency in a particular local region. As the most important 
work in early stage, Itti [5] et al. utilized center-surrounded 
differences across multi-scale intensity, color and orientation 
features to define saliency. AC method [6] directly computed 
the color difference between the inner and outer local 
window. After extracting center-surround histogram, multi-
scale contrast and spatial distribution, Liu et al. [7] learned a 
conditional random field to find salient object. Considering 
the global clue, CA method [8] model saliency by computing 
the appearance difference between a  particular patch and its 
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most similar K ones. However, these methods may produce 
undesired high salient value near high-contrast edge. 
 Global methods measure the saliency all over the entire 
image by exploiting the color statistics, uniqueness, etc. the 
frequency-tuned method [9] estimates the pixel saliency by 
its color difference from the average image color. Based on 
the sparse color histogram, Cheng et al. [4] proposed a 
regional contrast based salient region detection model (RC). 
This method is promoted by saliency filter [10], which 
formulates saliency using N-D Gaussian filters. Then, Cheng 
et al. [11] used the soft image abstraction and color spatial 
distribution to improve the saliency results of RC.  
 Different from the global color contrast method, 
Margolin et al. [12] utilized the principal component analysis 
(PCA) to compare the main distinctiveness of image patches. 
Some graphical saliency models achieve best performance 
among the traditional global methods [13-14]. Yan et al. [13] 
constructed a hierarchical graph model and integrated the 
single-layer saliency cues through a energy minimization 
function. Yang et al. [14] detected saliency via the graph-
based manifold ranking, which considering both foreground 
and background cues. Furthermore, from the perspective of 
potential background content, Wei et al. [15] used geodesic 
distance with respect to background priors to define saliency. 
More recently, Zhu et al. [16] proposed a robust background 
measure called boundary connectivity to optimize the 
saliency results. 
 The most related to our model is the Bayesian framework 
based saliency method. Rathu et al [17] presented a sliding 
window to measure the observation likelihood and set the 
prior probability as a constant empirically. It is inaccurate 
and fragile. To tackle with this problem, Xie and Lu [18-19] 
utilized a coarse-to-fine strategy, which relies on the convex 
hull to circle a rough foreground region. However, if the 
initial convex hull is not correct as expected, some 
background will be assigned the similar salient value to the  



 

 

 
                                    (a) Org.                   (b) RA [17]               (c) XL [18]                (d) BS [19]                   (e)Our                       (f) GT 
Fig. (1). Some representative saliency maps of different methods. Org. stands for the original image, GT is the Ground Truth annotated by 
human. Note that our saliency maps outperform three previous Bayesian saliency models. 
real object. Sun et al. [20] improved above method through 
boundary and soft-segment, but still has high dependence on 
the convex hull. Different from the rational assumption of 
[18-20], the main contribution of this paper is that we 
propose using the statistical object proposal results of BING 
method to form the coarse conspicuity map, then optimize 
this map by superpixel based graphical model and spatial 
prior to get the final prior map. Some comparison of saliency 
results are shown in Fig. (1). Our method can effectively 
distinguish the background interference and real object. 

2.OUR IMPROVED BAYESIAN SALIENCY METHOD 
 We  describe briefly some previous Bayesian saliency 
models, firstly. Then, we present the details of our prior map 
and observation likelihood map construction in the Bayesian 
framework. 

2.1 Previous Methods 

 In [17-20], they define the posterior probability at each 
pixel x in the Bayesian framework as the saliency measure: 

  

p(s | x) =
p(s) ! p(x | s)

p(s) ! p(x | s)+ p(b) p(x | b)
            (1) 

  
p(b) =1! p(s)                                             (2) 

 
where p(s) and p(b) stand for the prior distribution of the 
salient region and background, respectively; p(x|s) and p(x|b) 
represent the corresponding observation likelihood. In [17], 
p(s) is set to a constant and p(x|s) is computed in a double 
layer sliding window. To get more accurate prior estimation, 
The methods of [18-20] extract Harris points and circle them 
to get a convex hull as the coarse saliency region. But these 
methods still fail in some cases (See Fig. (1) (b), (c)). 
 To overcome the intrinsic shortcoming of convex hull, 
we present the BING based Bayesian saliency model. The 
difference of the flowchart between [19] (most representative 
among Bayesian saliency models) and our method is shown 
in Fig. (2).  

2.2 Improved Prior Map Estimation 

 We use the statistical results of BING method to get the 
prior map. The BING method is proposed by Cheng et al. [21] 
to generate the object proposals with image window. Its main 
theoretical basis is that objects are stand-along things with 

well-defined closed boundaries, which also satisfies the 
saliency principle. For a 8×8 image window, it extracts the 
normed gradients (NG) as a 64D feature firstly. Then, to 
approximate the NG values, it utilizes the top Ng binary bits 
of the BYTE values, i.e., the 64D NG feature gl is described 
by Ng binarized normed gradients (BING) features: 
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where l is the location of the window, 
  
b

k ,l
! {0,1}8"8 . The fast 

BING calculation algorithm is referred in [21]. Then, each 
window should be scored with  a linear model w ! R64, 
which can be approximated with a set of basis vectors [22]: 
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where Nw is the number of basis vectors, αj ! {-1,1}64 
represents a basis vector, and βj is the coefficient.  αj can be 
modified as  
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where Cj,k =28-k(2<
 
!

j

+ ,bk,l>-| bk,l |). 
 The BING method is very efficient to provide object 
proposals with a small set of category-independent image 
windows. But due to the rectangle shape constraint of image 
window with different sizes, this method can’t distinguish the 
whole meaningful object from complex background precisely. 
Here, we use it to construct the initial coarse conspicuity map. 
 Assume there are N proposal image windows sampled in 
image I using BING, and the corresponding objectness 
score( or probability) of each window wi is p(wi). For a pixel 
x, if it locates in wi, we assign its probability p(x,wi)= p(wi) to 
indicate its objectness, otherwise, p(x,wi)=0. Then, we 
overlap all the N windows to obtain the probability of x: 

                    
  
P

o
(x) =

1

N
p(x, w

i
)

i=1

N

!                    (7)     

We set N=1000 according to the outstanding performance 
stated in [21]. The probabilities of all pixels constitute the  
coarse conspicuity map. Fig. (3)(e) shows the visual effect.  



 

 

                                                                      

 
(a) The flowchart of the previous Bayesian method in [20] 

 

 
(b) The flowchart of our method 

Fig. (2). The comparison of different Bayesian saliency models 
 
Its location of potential salient region is more accurate than 
the convex hull (See Fig. (3)(c)). 

 
            (a)                             (b)                              (c)                            (d) 

 
     (e)                             (f)                              (g)                            (h) 

Fig. (3).  The visualization of generating prior map of [19] and our 
method. (a) is the input image, (b) is the superpixel decomposition 
results, (c) is the convex hull, (d) is the prior map of [19], (e) is the 
coarse conspicuity map based on BING, (f) is the refined 
conspicuity map via superpixel, (g) is the graph based color contrast 
map and (h) is our prior map. 
 
 To generate more perceptually accurate conspicuity 
region, we use SLIC method [23] to decompose an image into 
superpixels, which can treat large-scale homogeneous pixels 
with similar features as a unit and well preserve the global 
object boundaries. If the image is over-segmented into M 
superpixels and the i-th superpixel is spi, we formula the 
refined conspicuity value of spi as: 
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where Ni is the number of pixels included in spi. Compute all 
the M refined conspicuity values and normalize them to [0,1]. 
(See Fig. (3)(f)). 
 The global saliency clue should be involved to improve 
the distinction between real salient regions and background. 
But different from the strategy of [19], which uses Laplacian 
sparse subspace cluster to aggregate all the superpixels into 
several color clusters and compute the intersection area with 
respect to the convex hull as the final prior map, we employ 
the graphical model and boundary color contrast to enhance 
our conspicuity map. 
 We construct an image graph G = (V, E), where nodes V 
stand for the superpixles and edges E represent the links 
between different nodes. Motivated by [14], we define this 
graph sparsely connected—each node not only connects to its 
neighboring nodes, but also the nodes that share common 

boundaries with its neighborhood (See Fig. (4)). Then, for a 
node i and its adjacent node j in the neighborhood region R, 
the weigh wij of the edge eij is defined as 

            
  
w
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= e
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||/" 2
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j ! R                 (9) 

where ci and cj represent the average color of spi and spj in 
CIELab space, respectively.σ 2=0.1 in our experiments. 

 
Fig. (4).  The example of the node (superpixel) and its sparsely 
connected local region in graph model. The center node (yellow 
color) connects to its directly adjacent node (green color), and the 
nodes that share common boundaries with its neighborhood (white 
color) 
 
 Inspired by [14,15], we also assume that the majority of 
nodes along image boundaries belong to real background and 
utilize the “one-dimension rule” to deal with the situation that 
part of salient object may touch the image boundaries. But 
different from using manifold ranking [14] or geodesic 
distance [15], we just adopt color contrast to measure the 
difference. 
 If there are N background nodes, b represents the b-th one, 
the background contrast of node i is defined as the summation 
of its K minimum color distance with respect to the 
background nodes in CIELab space: 
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BCi represents the distinctiveness between node i and the 
estimated background. Intuitively, the real object is usually 
consisted of homogeneous superpixels. To get more stable 
and accurate results, we consider the neighborhood influence 
of node i in the sparsely connected region R to get the final 
color contrast (CC): 
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Where λ is the balance parameter. In our experiment , λ=0.4. 
The graph based color contrast map is shown in Fig. (3) (g). 
 Integrate (8) and (11), the final refined conspicuity value 
of spi is: 

                       
 
!C
i
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i
+CC

i
                      (12) 

 The spatial information has been widely used in many 
state-of-the-art saliency models [3,7,11,12]. According to the 
phenomenon call “center-bias”, which originates from the 
humans’ habit of placing the object in the middle of image 
when photograph, we optimize the per-pixel conspicuity map 
to get the prior map. The value of pixel x in the prior map p(s) 
is computed by: 

  
p(s) = !C (x) " e

#$||l
x
#l

c
||                  (13)                          

where lx is the location of x, and lc is the center location of the 
prior map. 

  
! =1 / max(H ,W ) controls the spatial effect. H 

and W are the height and width of image, respectively. See 
Fig. (3) (h), our prior map highlights the real object while the 
previous Bayesian method in [19] makes part of redundant 
background salient (Shown in Fig. (3) (d)). 

2.3 Enhanced Observation Likelihood 

Obviously, a more accurate prior map can greatly benefit 
the computation of observation likelihood. Different from 
[19], which directly supposes all the pixels inside the convex 
hull to be foreground and these outer pixels to be background 
(see Fig. (3) (c)), we use the adaptive threshold strategy 
described in [24] to binarize the prior map (see Fig. (3) (h)). 
As shown in Fig. (5) (a), our improved estimation result is 
more consistant with the human visual observation result (Fig. 
(5) (c)) compared with the convex hull (Fig. (3)(c)). 

         
         (a)                                     (b)                                       (c) 

Fig. (5).  (a) is the improved foreground and background estimation 
result after binarization, (b) is the saliency map of our method, (c) is 
the Ground Truth labeled by human 

 
Then we also utilize the center-surround way [19] to 

acquire the observation likelihood based on the improved 
foreground and background estimation result. In CIELab 
color space, we define the color histogram of F (Foreground) 
and B (Background) as {FL,Fa,Fb} and { BL,Ba,bb } 
respectively. And the corresponding numbers of bins in F and 
B are NF and NB. The values of pixel x in these two 
histograms are Fi(x) and Bi(x), i ! {L, a, b}. Assume the 
histograms of L, a, b are independent, the observation 
likelihood of pixel x can be computed by: 
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(x)

N
Fi!{L,a,b}

"                         (14) 
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B
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Take p(s) of (13), p(x|s) of (14) and p(x|b) of (15) into (1), we 
can produce the improved Bayesian saliency map(Fig. (5)(b)). 

3. EXPERIMENTS 

 We evaluate the proposed method on two benchmark 
datasets: the widely used MSRA-1000 dataset [9] and the 
most difficult SOD dataset [15] with human annotated 
Ground Truth (GT). 13 state-of-the-art methods are compared 
to complete the qualitative and quantitative analysis, 
including: RC [4], Itti [5], AC [6], FT [9], SF [10], GC [11], 
PCAS [12], GS-SP [15], RA [17], XL [18], BS [19], CB [24], 
LR [25]. As to the parameters setting, we decompose each 
image into 200 superpixels for efficiency. In (10), we set 
K=10 for in the following experiments. 

3.1 Evaluation on MSRA-1000 Dataset 

 The MSRA-1000 dataset is a subset of the MSRA dataset 
[7] and it is a commonly used dataset for evaluating the 
salient object detection methods. The qualitative comparison 
of some representative saliency maps generated from 
different methods are shown in Fig. (6) (Org. means the 
original image). It is obvious that our proposed method can 
highlight the real salient objects (the white pixels in GT) 
more accurately and uniformly than the alternatives. Note that 
our improved Bayesian saliency model apparently 
outperforms RA, XL and BS (three previous Bayesian 
saliency method). RA tends to produce higher salient values 
in some background regions with high local contrast. In some 
cases, the salient values of real object and part of background 
are indistinguishable (the second image of RA in Fig. (6)). 
XL and BS are highly dependent on the convex hull, which 
may divide a lot of redundant background into salient region 
improperly, leading to an inaccurate map inevitably (the first 
and second images of XL and BS in Fig. (6)). Even in the 
extreme case, convex hull wrongly circles part of background 
as the real object, which may greatly enhance the undesired 
background while ignoring the whole object in saliency map 
(the third image of XL and BS in Fig. (6)). These 
shortcomings will not appear in our method. 
 We adopt the precision-recall (P-R) curves generated by 
varying the fixed threshold from 0 to 255 and computing the 
corresponding precision and recall with respect to the GT, as 
the first quantitative evaluation [9]. Precision stands for the 
percentage of salient pixels correctly assigned with respect to 
all detected salient pixels, while recall means the percentage 
of correct salient pixels with respect to the GT. As shown in 
Fig. (7), our method outperforms others when the recall value 
is under 0.85. when the recall is in the range [0.85, 1], the 
precision of our method is slightly lower than GS-SP, but still 
higher than most compared methods. The highest precision 
value of our method is 0.95, superior to GS-SP (0.91). 
Compared to the three Bayesian saliency model: RA, XL and 
BS, the precision of our improved model is much higher. 
 As the overall performance, the F-measure at a fixed 
threshold is computed by 

      
  

F !measure =
(1+ "2 ) Pr ecision# Re call

"2 Pr ecision+ Re call
           (16) 

where β2=0.3 to assign precision higher weight according to 
[9-11]. We calculate all the F-measures on the thresholds 



 

 

ranging from 0 to 255 just like getting the P-R curves [20]. 
As shown in Fig. (8), our method has the highest F-measure 

0.871 when T=183 (CB method [24] has the second highest  

 
            Org.                         Itti                             AC                           FT                            RA                           RC                           CB                        GS-SP 

 
            LR                           SF                           PCAS                         GC                           XL                           BS                          Our                           GT 

Fig. (6).  The visual comparison of our saliency maps with 13 state-of-the-art methods. 

  
                    Fig. (7).  The P-R Curves of different methods                              Fig. (8).  The F-measure vs T (threshold) Curves of different methods 

F-measure 0.866 when T=125) and it keeps high level when 
T varies in a wide range [100, 225]. The F-measure of RA 
(0.727), XL (0.832) and BS (0.852) are much lower than ours, 
indicating that the proposed method indeed improves the 
Bayesian Framework. 
 We also adopt the adaptive threshold strategy explained in 
[9] which is defined as twice of the mean salient value to get 
the average precision, recall and F-measure (see Fig. (9)). We 

conclude from the comparisons that: (1) The F-measure of 
our proposed method (0.836) outperforms 12 state-of-the-art 
methods except CB (0.861) which employs the global context 
and shape salient clues. (2) Compared to RA, XL and BS, the 
precision and F-measure of our method is best, demonstrating 
the efficiency of our improvement. 
 The above P-R curve, F-measure and adaptive threshold 
measure don’t consider the number of pixels that is marked as 



 

 

non-salient region correctly (the black pixels in GT, as shown 
in Fig. (6)). To get more balanced comparison results, we use 

Mean Absolute Error (MAE) introduced in [10]: 
 

       
  

MAE =
1

W ! H
| S(i, j) "GT (i, j) |

j=1
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i=1
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#                (17) 

where W and H are the width and height of the saliency map. 
The MAE histograms are shown in Fig. (10). Our improved 
method produces the lowest MAE value 0.094, which proves 
that it provides a better overall similarity measure between 
the saliency map and GT, including the foreground (white in 
GT) and the background (black in GT). 

 
Fig. (9).  The Precision, Recall and F-measure after adaptive 
threshold 

 
Fig. (10).  The MAE histograms of different methods 

3.2 Evaluation on SOD Dataset 

 The SOD dataset is considered as the most difficult and 
challenging dataset, as it contains 300 images with multiple 
objects and there are great variations in their scales [15]. 
Similar to [26], due to the complexity of SOD, we choose the 
10 state-of-the-art methods with better performance to 
compare their P-R curves, F-measure vs T curves, adaptive 
threshold results and the MAE histograms( as shown in Fig. 
(11)) with our method. These four quantitative performance 
evaluation results of all the methods are generally not very 
good. 
 As observed from Fig. (11)(a), The GS-SP method, which 
presents the SOD dataset and the human labeled Ground 
Truth, has the best precision and recall rate. Our method 
produces the second best result on this quantitative indicator. 
Compared to the previous Bayesian saliency method: RA, XL 

and BS, our method significantly promotes the precision and 
recall. When the recall is below 0.1, the precision of our 
method reach the best value (about 0.8). 
 Similar to the comparison results of P-R curves, as shown 
in Fig. (11)(b), the highest F-measure of our method (0.616) 
is only lower than GS-SP (0.650), but still higher than others, 
especially RA,XL and BS.  
 After adaptive threshold, the average F-measure of our 
method (0.569) is lower than PCAS (0.592) and GS-SP 
(0.632), but higher than RA (0.39), XL (0.519), BS (0.535) 
(See Fig. (11) (c)). Actually, All these F-measures are not 
good enough, implying that the simple binarization strategy 
based on the saliency maps cannot accurately extract the real 
salient object when dealing with complex images. 
 As shown in Fig. (11)(d), the MAE value of our method is 
0.276, very close to GC (0.273), PCAS (0.275) and GS-SP 
(0.280). It is apparently superior to RA (0.360), XL (0.320) 
and BS (0.308). 
 All of the above four quantitative comparisons 
demonstrate that our method has better overall performance 
than most state-of-the-art methods, including three previous 
Bayesian saliency models, but still need further improvement 
when confronting the difficult images with multiple objects. 
 Several representative saliency maps of different methods 
are shown in Fig. (12). Take the large-scale object (the first 
image in Fig. (12)) for an example, our method produces the 
best result, which is very similar to GT. Observe the three 
previous Bayesian saliency model:  RA only highlights a 
small part of salient object; XL wrongly assigns part of 
background with high salient value; BS generates lower 
salient value in some important part of real object. For the 
low contrast image and the image with two different objects 
(the second and third image in Fig. (12)), our method can also 
produce excellent visualization results, verifying the 
efficiency of our improvement. 

3.3 Failure Cases 

 Our method is based on the Bayesian model. Although we 
make great improvement to get more accurate prior map and 
observation likelihood in the Bayesian framework, but there 
still exist some images which don’ t accord with our 
principle. Some failure cases are shown in Fig. (13). When 
the color of real salient object is very close to most 
background, especially existing multiple objects with similar 
color to background, our method will fail. In these cases, RA, 
XL and BS generate worse results. 

3.4 Running Time Comparison 

 Finally, we compare the average running time of these 
methods on MSRA-1000 and SOD datasets. We do 
experiments using a computer with Inter(R) Core(TM)i5-
2410M 2.8GHz CPU and 8GB RAM. Our method is 
implemented by Matlab and the average running time is 3.32 
s for an image. It’s not very fast. However, considering the 
evaluation of quantitative performance, our method still has 
advantage over these state-of-the-art methods. 



 

 

Table 1.  Comparison of average running times 
Method Our BS XL GC PCAS SF LR 
Time(s) 3.32 156.45 2.18 0.09 6.17 0.15 22.34 

 

Method GS-SP CB RC RA FT AC Itti 
Time(s) 7.39 2.75 0.13 9.48 0.18 0.06 0.33 

 

 

 
 

Fig. (11).  The four quantitative performance evaluations on SOD dataset of our method and 10 state-of-the-art methods 
 

 

 
                                                Org.                   FT                     RA                    RC                    CB                  GS-SP                  LR             



 

 

 
                                                           PCAS                 GC                    XL                    BS                     Our                     GT 

Fig. (12).  The visual comparison of 10 previous approach and our method 
 

 
Fig. (13).  Some failure saliency maps of our method and three previous Bayesian saliency models 

 
4. CONCLUSIONS 

 In this paper, we propose an improved Bayesian saliency 
model through the objectness proposal method—BING and 
graph based boundary color contrast measure. The statistical 
probability results of BING can provide the coarse location of 
potential object more accurately and robustly compared with 
the convex hull based Bayesian saliency model. Then, the 
graph based color contrast measure has greatly enhanced the 
prior map, which also benefit the observation likelihood. 
After the integration via Bayesian formula, we get the final 
saliency map with better performance. The experimental 
results indicate that our method outperforms all 13 sate-of-
the-art methods in qualitative and quantitative evaluations, 
especially these methods based on the similar Bayesian 
framework—RA,XL and BS. In future work, we will 
investigate discriminative salient features to estimate the 
location of potential object more accurately. 
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