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Abstract:  Community user access of a WebGIS is characterized by intensity and popularity; the requested geospatial 
data have characteristics of spatial and temporal locality. This paper proposed an expression for the replacement 
feature by balancing spatial and temporal locality as well as long-term and short-term popularity in tile access to 
ensure the replacement process can not only optimize global access but also adapt to access pattern changes. Then, 
using the Hash function and linear linked chains to provide cooperative cache management in a heterogeneous 
cluster-based caching system speeds up the query and replacement process of tiles and improves the performance of 
the cluster-based cache service. Experimental results reveal that proposed method obtains a higher cache hit rate and 
a good average response performance for a heterogeneous distributed cluster-based cache system, servicing more 
users and increasing its service capacity. 
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1. INTRODUCE  

As development of Web Geographic Information 
Systems (WebGIS) has progressed, user activity on such 
systems has increased [1]. High levels of user access to 
WebGIS entail some social community law and access 
repeatability; the accessed hotspot geospatial data exhibits 
spatiotemporal locality [2-5]. A distributed cluster-based 
caching system (DCCS) can cache accessed hotspots in 
cluster-based cache servers, reducing the database I/O 
bandwidth and the response time for large-scale user 
access, thereby providing a scalable WebGIS service [6]. 
DCCS is the one of the most effective service-accelerating 
methods. However, the cache capability in DCCS is 
limited. When the cache is filled by outdated hotspot data, 
the new popular hotspot data cannot be cached. Thus, low 
storing-value data in the cluster-based cache system must 
be deleted to free storage space for new hotspot caching. 
This method is called cache replacement, and it directly 
impacts DCCS performance in terms of cache utilization, 
cache hit ratio, response delay, and so on. Thus, cache 
replacement is the key method to improve performance of 
a cluster-based WebGIS service.   

Some advantageous studies have been conducted on 
cache replacement for Web pages, which can be divided 
into three types: 1) methods based on the locality principle, 
such as Least Recently Used (LRU) [7], Least Frequently 
Used (LFU) [8], First In, First Out (FIFO) [7], and their 
variants; 2) methods based on the size of cached data, such 
as Size-based Replacement [9] and its varieties, Greedy 
dual-size [10], and LRU-MIN [11]; and 3) methods based 
on specific accessed content, such as the Weight method 
based on translating time cost, data size, and the latest 
access time [12], Hybrid-G [13], Lowest Relative 
Value(LEV) [14], and Size-Adjust LRU [15]. Many 
existing applications still use LRU as their replacement 
strategy, such as Google [16] and NASA [17]. However, 
geospatial data in WebGIS have specific spatial and 
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temporal features in access patterns, which differ from 
Web pages, and are stored primarily in tiles based on a 
pyramid model. The tiles in each layer have the same size; 
there are multiple tiles in a browsing window while a user 
is roaming in WebGIS. Thus, the methods mentioned 
above cannot directly be used in cache replacement for 
geospatial data. 

In the WebGIS research domain, some methods of 
replacement have been proposed, which can be classified 
into two types. One type involves replacing tiles with the 
lowest access probabilities, which are computed through 
system analysis or training [18, 19]. This requires large 
volumes of statistics and probability computations because 
there are large numbers of tiles in WebGIS. These methods 
cannot adapt quickly to changes in access patterns. Thus, 
such methods cannot be used efficiently in WebGIS. The 
other type of method uses statistics of the interval access 
time for tiles for a single client and replaces tiles with 
higher interval values on the client cache [20]. Such 
methods cannot be used to achieve collaboration among 
heterogeneous cluster-based multi-cache servers.  

Some studies have shown that community user access to 
geospatial data has spatial and temporal locality [2-5, 21]. 
Temporal locality of access to tile means that the latest 
accessed tile has a higher probability that it will be 
accessed again. The temporal locality is embodied in the 
access time interval or access frequency. Spatial locality of 
access to tile means that tiles that are spatial neighbors 
have adjacent access time, that is, when a tile is accessed, 
both that tile and its neighboring tiles, which are in the 
same local area, have a higher probability that they will be 
accessed again in the next moment. The spatial locality of 
the accessed tile is embodied in the adjacency between 
accessed tiles. However, the relationship between spatial 
locality and temporal locality of tile access is associated. 
Access to tiles also has the characteristic of long-term and 
short-term popularity. Thus, this paper analyzes and 
considers the spatial locality and temporal locality of tile 
access and proposes a way to express the accessed hotspot 
popularity and its features of spatial-temporal locality and 
access stability by balancing the long-term and short-term 



 

 

features, not only to keep the cached objects relatively 
stable but also to adapt to hotspot changes and to reduce 
frequency of replacement operations. The paper then 
proposes a cluster-based cache replacement method with a 
collaboration style for heterogeneous DCCS to improve 
cache hit rate and cluster-based service efficiency. 

2. EXPRESSION OF ACCESS 
SPATIAL-TEMPORAL LOCALITY FOR 
GEOSPATIAL DATA 

Geospatial data are generally stored as tiles and thus this 
paper uses a tile as a cache unit. Zipf's law of tile access 
dictates that access to a tile is uneven when users are 
roaming in WebGIS; the access probability of a tile and its 
access rank follows a power-law distribution [2-5]. The 
law further indicates that a tile that has frequently been 
accessed in the past has a high probability of being 
requested again in the near future [5]. Thus, the probability 
of a tile being accessed again can be simplified as being in 
direct proportion to its long-term popularity (the total 
number of times a tile is accessed) [20]. Further, if a tile 
has a higher access frequency, its neighboring tiles will 
likewise have a higher probability of being accessed. Thus, 
the total number of times a tile is accessed can reflect a 
spatial distribution of tile access for a tile with geography 
features, that is, access spatial locality. Zipf's law reflects 
the long-term access popularity of a tile, which can be 
used for an effective cluster-based cache replacement 
mechanism [22].   

LRU reflects the short-term popularity of tile access. It 
considers that the probability of a tile being accessed again 
is in inverse proportion to the interval between tile access 
time and current time. Thus, the access probability of tiles 
is ranked according to LRU in descending order, the rank 
being determined by the latest access time of a tile. Tiles 
that were accessed more recently are ranked higher and 
tiles that were accessed earlier are ranked lower. Since 
rank depends on the latest access time, LRU ignores the 
long-term access of tiles, which could lead to instability in 
replacement. As we observed from access logs in an actual 
WebGIS, a tile’s access interval time is always dynamic. 
Thus, we use access interval time to reflect the temporal 
locality and short-term popularity of tile access, and 
accumulate the access interval time to reflect the long-term 
access popularity and spatial locality. Thus, taking into 
account both spatial and temporal locality, and both 
long-term and short term popularity, we propose an 
algorithm, Sum of Tile Access Times per Interval (Stat), as 
shown in (1): 

( ) ( )
2

tat i 1 tat i tat(k), i 2

0
(

,
)

i 1

i

kstat i =
! + ="

=
=#

$#
%
&

'          (1) 

   
with 

( )
( )

( )

1

(1)

accessTimes k
tat k

accessTime k accessTime

!
=

!
 

Equation(1) shows tat(k) is the average access times in a 
unit time for k-th access, that is, the k-th access frequency. 
The value of tat(k) is related to total number of times the 
tile is accessed and current access time, and reflects the 
long-term access characteristic as a Zipf distribution and 
access spatial distribution. It considers two access spatial 

factors: the spatial distance between current accessed tile 
and the tile in cache, and the difference of spatial distance 
between current accessed tile and the tile in cache. stat(i) is 
the accumulated value of access times in a unit time under 
the i-th access time. It reflects the temporal locality and 
considers two temporal factors: the interval time between 
current access time and previous accessed time of a tile, 
and the difference between previous intervals.  
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Equation (2) shows that the i-1 previous accesses are all 
involved in the operation for stat(i). Thus, both the total 
number of times a tile is accessed and each access to a tile 
work on the value of stat. 

To reducing the complexity of the Stat algorithm and 
eliminate the uneven distribution of locality for spatial 
access, stat can be shortened to (3) and (4), where i is the 
i-th access: 
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with 

∆t =accessTime(i) - accessTime(i-1)            (4) 
Thus, the Stat algorithm considers that the access 

probability p is in direct proportion to total number of 
times a tile is accessed and is inversely proportion to 
interval time. As (5) 
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Equation (3) accumulates the reciprocal of each ∆t 
value for the value of stat. The interval time between 
adjacent access points is used to replace the average value 
of multi-access frequency. It can reflect the uneven access 
in an actual WebGIS. The more a tile is accessed, the 
higher the stat value of the tile; the shorter the interval 
time between two adjacent accesses, the higher the stat 
value of the tile, as shown in Equ.3. The higher the stat 
value, the higher the probability the tile will be accessed 
again. The stat value of a tile which is not accessed for a 
long time will gradually decrease. Thus, the stat value 
indicates the cached value of a tile; therefore, a tile with a 
lower stat value can be replaced. This method helps to 
quickly identify the tile with the lower cached value and to 
reduce the replacement frequency. 

3. COLLABORATIVE REPLACEMENT METHOD 
IN A HETEROGENEOUS DCCS 

3.1 Cache index 

A pyramid model for tiles is a valid method for storing 
and managing geospatial data in a multi-resolution 
hierarchy model. The idea is that by a block-and-layer 
operation, different resolution layers are generated by 
resampling from raw data. A layer of data is mapped onto 
a specified number of pixels in a block to generate a tile 
matrix. A tile with coordinates ( tx , ty , ℓ )is on the matrix 
on the ℓ-th layer, in line tx and row ty. The client 
application calculates the coordinates of the center tile of 



 

 

the current browsing view based on its longitude and 
latitude, and it then requests the tile by providing its 
coordinates ( tx , ty , ℓ ) to the server. The request format is 
similar to URL=http://WebGIS_server_address/tile. 
aspx?L= ℓ&X=tx&Y=ty&. 

A high-efficiency cache index should be built for DCCS, 
in order to carry out operations such as create, query, 
update, and delete for cache management; when the 
number of cached tile achieves the replacement threshold 
value, the cache index can help to implement the cache 
replacement algorithm. Taking a tile as a unit, this paper 
builds an index for caching tiles based on the pyramid 
model. As shown in Fig.1, the Hash function and linear 
linked chains are used to build a cache index CacheIndex. 
The triplet coordinates ( tx , ty , ℓ ) of tile as the key 
variable are mapped to a table entry h (0 <=h <=H) using 
the Hash function. When mapping conflict happens, the 
tiles that have the same Hash value are stored in the same 
linear linked chain. Thus, the index can complete a query 
operation with Time Complexity O(1*n)(where n is the 
length of the linear linked chain that connects with table 
entry h) and locate the requested tile in the DCCS quickly. 

 
Fig. (1). Cache index 

In a linear linked chain, each node is an array 
Tilecached with size 7. Tilecached[0] is the coordinate of 
tile ( tx , ty , ℓ ), Tilecached[1],as ServerNo, is the 
identifier of the cache server in which tile ( tx , ty , ℓ ) is 
cached, Tilecached[2] is the store offset in the cache. 
Tilecached[1] and Tilecached[2]can help to locate the 
cached tile in the cluster-based cache, in order to obtain the 
tile data quickly and return the tile to the user, reducing the 
response delay. Tilecached[3], as firstVisitedTime, records 
the first request time for tile ( tx , ty , ℓ ). Tilecached[4], as 
lastVisitedTime, records the latest request time for tile ( tx 
, ty , ℓ ). Tilecached[5], as totalAccessTimes, records the 
total access times for tile ( tx , ty , ℓ ), and Tilecached[6] 
records the latest stat value for the latest access of tile ( tx , 
ty , ℓ ), which is the replacement attribute value. In each 
linear linked chain of table entry h, each node is sorted in 
descending order by stat value. The end node has the 
lowest stat value. Thus, during cluster-based cache 
replacement, only the end node of each linear linked chain 
is compared and the tile with the lowest stat value is 

replaced. This can reduce search time in the replacement 
process. 

Because the cluster-based servers are heterogeneous, 
each server has a different cache capacity(CC) and service 
processing capacity(SPC, the capacity that the number of 
requests the sever can process in a unit time), as Fig.(2). 
We should setup another two-dimensional index, 
ServerCaching[n][4], to record the caching state of each 
server for cache management and replacement. N is the 
number of cluster-based cache servers, 
ServerCaching[i][0], as cacheSize, is the cache capacity 
of server Si. ServerCaching[i][1],as cachedSize, is the 
used cache size of server Si. ServerCaching[i][2] is the 
SPC of server Si. ServerCaching[i][3], as current Service 
Request, is the number of requests that the server is 
currently processing (Current Service Request, CSR). 

3.2 Replacement flow and collaboration in DCCS 

For a set of DCCS servers S={Si,1≤i≤N}, each server 
has a different SPC and CC, as shown in Fig.(2). The 
cluster supervisor manages and harmonizes cluster-based 
servers, to ensure the DCCS is available and scalable. 
Based on the simplest management rule and the different 
capacity of each server, considering both cached tiles and 
non-cached tiles, the basic idea of DCCS collaboration for 
the replacement method is that the server with the highest 
SPC value will process more tile requests and cache more 
tiles as its cache capability will allow in order to achieve 
load balancing for heterogeneous DCCS and optimal 
performance for cluster-based service response. Service 
flow is as shown in Fig.(3), and is explained below. 

Step1. Request to tile ( tx , ty ,ℓ ) arrives; cluster 
supervisor computes h-value for tile ( tx , ty , ℓ ) based on 
the Hash function. Retrieve the h-th linear linked chain 
connected with table entry h for tile ( tx , ty ,ℓ ). If tile ( tx , 
ty ,ℓ ) is found, this is known as a cluster cache hit and the 
Tilecached node of tile ( tx , ty ,ℓ )from h-th linear linked 
chain is returned. According to Tilecached[1] (ServerNo.) 
and  Tilecached[2]  (cacheStoreOf f set) , locate tile ( tx 
, ty ,ℓ ) in the cluster-based cache and return the tile data to 
the user; modify Tilecached[4] (currentTime) and modify 
the stat value in Tilecached[6] based on Equ.3.Move the 
node of tile ( tx , ty ,ℓ )to the correct location in the h-th 
linear linked chain. If retrieve fails, then a “no 
cluster-cache hit” occurs, so proceed to step 2. 

Step2.  Send request to tile ( tx , ty ,ℓ ) to the back-end 
cluster-based store servers, retrieve tile ( tx , ty ,ℓ ) and 
return the data to the cluster supervisor and the user. 

Step3.  Cluster supervisor judges whether the DCCS 
has reached the replacement threshold. If it has, compare 
the stat value of the end node of each linear linked chain in 
the CacheIndex, get the node with the lowest stat value 
and replace the new arriving tile ( tx , ty ,ℓ ) with the 
outdated tile (tx’,ty’,ℓ’). Maintain the CacheIndex by 
deleting the node of tile (tx’,ty’,ℓ’) and inserting the node 
for tile ( tx , ty ,ℓ ) into the correct linear linked chain 
based on its Hash value.  

Step4. If the DCCS has not reached the replacement 
threshold, select the cache server with the highest value of 
left SPC(the value is calculated by SPC–CSR) and has 
space for caching tile (tx,ty,ℓ). Insert the node of tile 
(tx,ty,ℓ) into the correct linear linked chain based on its 
Hash value.  



 

 

 

 
Fig. (2). Heterogeneous DCCS 
 

 
Fig. (3). Replacement flow and collaboration in a Heterogeneous 

DCCS 

4. SIMULATION AND RESULT ANALYSIS 

To simplify the simulation to verify the advantages of 
cache replacement methods, we used 90-m global Shuttle 
Radar Topography Mission (SRTM) terrain data, with tiles 
of size 128×128. In the simulation, 12 distributed 
cluster-based caching servers were connected using a 
1,000-Mbps switch to form a fast Ethernet. A cluster 
supervisor with sufficient processing power was placed at 
the entrance of the distributed system to prevent 
forwarding bottlenecks. The requests to tiles can be 
express as a Poisson distribution [23] in networked 
systems. Thus, in this simulation, tile requests were 
100,000 following a Poisson distribution. The simulations 
used the replacement method proposed in this paper, and 
compared it with classic methods, such FIFO [7], LFU 
[8],LRU [7], and TAIL ( Tile Access average Interval time 
Longest) [20]. 

The cache size in a DCCS is an important efficiency 
factor for a distributed cache replacement strategy. The 
relative size of the cache (RSC) is the ratio of the cache 
size to the total size for the tiles requested. Therefore, 
simulations in which RSC were varied were carried out to 
compare the cache replacement performance in terms of 
the cache hit rate and average request response time. 

4.1 Cache hit rate (CHR) 

CHR is an important indicator to verify the efficiency of 
a cache replacement method, which reflects the availability 
of cache replacement. CHR is the ratio of the direct 

response by a cluster-based cache for tile requests to the 
total number of tile requests. Fig.(4) shows the CHR of 
FIFO, LFU, LRU, TAIL and Stat using different RSC. It 
indicates that cache hit rate is increases approximately 
linearly with the cache size. CHR of Stat increased rapidly 
compared to the other methods when the RSC was 
between 40% and 70%. FIFO and LRU take temporal 
locality into account while LFU takes spatial locality into 
account; thus, they both perform more weakly than TAIL 
and Stat, which consider both temporal locality and spatial 
locality. When RSC is lower(10%–30%), CHR of Stat is 
around 5% higher than TAIL; while RSC is between 40% 
and 70%, CHR of Stat is around 10% higher than TAIL. 
This shows that the replacement frequency is higher under 
lower CHR; Stat and TAIL both reflect the average access 
frequency in the short term, so they show little difference 
in CHR. When RSC increases, Stat reflects a long-term 
accumulated access frequency and access stationarity, 
while TAIL only reflects average access frequency for the 
short-term. Thus, Stat considers both temporal locality and 
spatial locality, while balancing the short-term and 
long-term access popularities. 

 
Fig. (4). Comparison of cache hit rates 

 

 
Fig. (5). Comparison of average request response time 

4.2 Average response time (ART) 

ART can reflect the advantages of DCCS, and different 
cache replacement methods have different influences on 
the performance of a DCCS. From Fig.5, we can see that 
the ART of the five methods decreases as cache size 
increases. Stat's ART is 15% to 19% lower than FIFO, 
10% to 15% lower than LRU, 10% to 17% lower than 
LFU, and 4% to 11% lower than TAIL. This shows that 
Stat provides more advantageous service performance than 
the other three methods for large-scale users. Stat can 
balance the different capacities of heterogeneous servers 



 

 

and use them to the best of their capacities. Furthermore, 
considering the long-term access characteristics and access 
spatial and temporal locality, Stat shows lower 
replacement frequency, reducing operations in the cache. 
Using the Hash function and linear linked chain to manage 
the cache, Stat accelerates the retrieval process and reduces 
response time, which means that the DCCS can service 
more users and increase its service capacity. 
5. CONCLUSION  

Access to geospatial data not only has characteristics of 
spatial and temporal locality, but also has features of 
long-term and short-term popularity in WebGIS. This 
paper proposed an expression for replacement feature by 
balancing the temporal locality and spatial locality of 
access to tiles, which embodying both long-term 
popularity and short-term popularity of access to tiles. 
Since cluster-based cache servers in a heterogeneous 
DCCS have different cache capacities and service 
processing capacities, this paper then proposed a 
collaboration method for cache replacement in DCCS, 
which used Hash function and linear linked chain to do 
cache management and replacement quickly. In future 
work, we will study the access pattern of spatial transfer 
based on time series during roaming for community users 
to find a more precise expression for spatial-temporal 
locality and to improve the performance of the 
replacement method. However, such an investigation 
should include large amounts of data from user access 
logs. 
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