

The Open Cybernetics & Systemics Journal

Disclaimer: This article has been published immediately upon acceptance (by the Editors of the journal)
as a provisional PDF from the revised version submitted by the authors(s). The final PDF version of this
article will be available from the journal URL shortly after approval of the proofs by authors(s) and
publisher.

Replacement Method based on Access Spatiotemporal Locality in a Het-
erogeneous Distributed Cluster-based Caching System for WebGIS

Rui Li, Xinxing Wang and Yanping Lin

The Open Cybernetics & Systemics Journal, Volume 9, 2015

ISSN: 1874-110X
DOI: 10.2174/1874110X20150610E010

Article Type: Research Article

Received: April 17, 2015
Revised: April 22, 2015
Accepted: April 27, 2015

Provisional PDF Publication Date: June 10, 2015

© Li et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduc-
tion in any medium, provided the work is properly cited.

Replacement method based on access spatiotemporal locality in a

heterogeneous distributed cluster-based caching system for WebGIS

Rui Li*, Xinxing Wang, Yanping Lin

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
Wuhan, Hubei, 430079, PR China

Abstract: Community user access of a WebGIS is characterized by intensity and popularity; the requested geospatial
data have characteristics of spatial and temporal locality. This paper proposed an expression for the replacement
feature by balancing spatial and temporal locality as well as long-term and short-term popularity in tile access to
ensure the replacement process can not only optimize global access but also adapt to access pattern changes. Then,
using the Hash function and linear linked chains to provide cooperative cache management in a heterogeneous
cluster-based caching system speeds up the query and replacement process of tiles and improves the performance of
the cluster-based cache service. Experimental results reveal that proposed method obtains a higher cache hit rate and
a good average response performance for a heterogeneous distributed cluster-based cache system, servicing more
users and increasing its service capacity.

Keywords: replacement, cache, access pattern, Hash, linear liked chain, spatiotemporal.

1. INTRODUCE

As development of Web Geographic Information
Systems (WebGIS) has progressed, user activity on such
systems has increased [1]. High levels of user access to
WebGIS entail some social community law and access
repeatability; the accessed hotspot geospatial data exhibits
spatiotemporal locality [2-5]. A distributed cluster-based
caching system (DCCS) can cache accessed hotspots in
cluster-based cache servers, reducing the database I/O
bandwidth and the response time for large-scale user
access, thereby providing a scalable WebGIS service [6].
DCCS is the one of the most effective service-accelerating
methods. However, the cache capability in DCCS is
limited. When the cache is filled by outdated hotspot data,
the new popular hotspot data cannot be cached. Thus, low
storing-value data in the cluster-based cache system must
be deleted to free storage space for new hotspot caching.
This method is called cache replacement, and it directly
impacts DCCS performance in terms of cache utilization,
cache hit ratio, response delay, and so on. Thus, cache
replacement is the key method to improve performance of
a cluster-based WebGIS service.

Some advantageous studies have been conducted on
cache replacement for Web pages, which can be divided
into three types: 1) methods based on the locality principle,
such as Least Recently Used (LRU) [7], Least Frequently
Used (LFU) [8], First In, First Out (FIFO) [7], and their
variants; 2) methods based on the size of cached data, such
as Size-based Replacement [9] and its varieties, Greedy
dual-size [10], and LRU-MIN [11]; and 3) methods based
on specific accessed content, such as the Weight method
based on translating time cost, data size, and the latest
access time [12], Hybrid-G [13], Lowest Relative
Value(LEV) [14], and Size-Adjust LRU [15]. Many
existing applications still use LRU as their replacement
strategy, such as Google [16] and NASA [17]. However,
geospatial data in WebGIS have specific spatial and

 * Address correspondence to this author at the LIESMARS, Wuhan
University, Wuhan, Hubei, 430079, PR China; Tel:+86 27
68778247;Email: Ruili@whu.edu.cn

temporal features in access patterns, which differ from
Web pages, and are stored primarily in tiles based on a
pyramid model. The tiles in each layer have the same size;
there are multiple tiles in a browsing window while a user
is roaming in WebGIS. Thus, the methods mentioned
above cannot directly be used in cache replacement for
geospatial data.

In the WebGIS research domain, some methods of
replacement have been proposed, which can be classified
into two types. One type involves replacing tiles with the
lowest access probabilities, which are computed through
system analysis or training [18, 19]. This requires large
volumes of statistics and probability computations because
there are large numbers of tiles in WebGIS. These methods
cannot adapt quickly to changes in access patterns. Thus,
such methods cannot be used efficiently in WebGIS. The
other type of method uses statistics of the interval access
time for tiles for a single client and replaces tiles with
higher interval values on the client cache [20]. Such
methods cannot be used to achieve collaboration among
heterogeneous cluster-based multi-cache servers.

Some studies have shown that community user access to
geospatial data has spatial and temporal locality [2-5, 21].
Temporal locality of access to tile means that the latest
accessed tile has a higher probability that it will be
accessed again. The temporal locality is embodied in the
access time interval or access frequency. Spatial locality of
access to tile means that tiles that are spatial neighbors
have adjacent access time, that is, when a tile is accessed,
both that tile and its neighboring tiles, which are in the
same local area, have a higher probability that they will be
accessed again in the next moment. The spatial locality of
the accessed tile is embodied in the adjacency between
accessed tiles. However, the relationship between spatial
locality and temporal locality of tile access is associated.
Access to tiles also has the characteristic of long-term and
short-term popularity. Thus, this paper analyzes and
considers the spatial locality and temporal locality of tile
access and proposes a way to express the accessed hotspot
popularity and its features of spatial-temporal locality and
access stability by balancing the long-term and short-term

features, not only to keep the cached objects relatively
stable but also to adapt to hotspot changes and to reduce
frequency of replacement operations. The paper then
proposes a cluster-based cache replacement method with a
collaboration style for heterogeneous DCCS to improve
cache hit rate and cluster-based service efficiency.

2. EXPRESSION OF ACCESS
SPATIAL-TEMPORAL LOCALITY FOR
GEOSPATIAL DATA

Geospatial data are generally stored as tiles and thus this
paper uses a tile as a cache unit. Zipf's law of tile access
dictates that access to a tile is uneven when users are
roaming in WebGIS; the access probability of a tile and its
access rank follows a power-law distribution [2-5]. The
law further indicates that a tile that has frequently been
accessed in the past has a high probability of being
requested again in the near future [5]. Thus, the probability
of a tile being accessed again can be simplified as being in
direct proportion to its long-term popularity (the total
number of times a tile is accessed) [20]. Further, if a tile
has a higher access frequency, its neighboring tiles will
likewise have a higher probability of being accessed. Thus,
the total number of times a tile is accessed can reflect a
spatial distribution of tile access for a tile with geography
features, that is, access spatial locality. Zipf's law reflects
the long-term access popularity of a tile, which can be
used for an effective cluster-based cache replacement
mechanism [22].

LRU reflects the short-term popularity of tile access. It
considers that the probability of a tile being accessed again
is in inverse proportion to the interval between tile access
time and current time. Thus, the access probability of tiles
is ranked according to LRU in descending order, the rank
being determined by the latest access time of a tile. Tiles
that were accessed more recently are ranked higher and
tiles that were accessed earlier are ranked lower. Since
rank depends on the latest access time, LRU ignores the
long-term access of tiles, which could lead to instability in
replacement. As we observed from access logs in an actual
WebGIS, a tile’s access interval time is always dynamic.
Thus, we use access interval time to reflect the temporal
locality and short-term popularity of tile access, and
accumulate the access interval time to reflect the long-term
access popularity and spatial locality. Thus, taking into
account both spatial and temporal locality, and both
long-term and short term popularity, we propose an
algorithm, Sum of Tile Access Times per Interval (Stat), as
shown in (1):

() ()
2

tat i 1 tat i tat(k), i 2

0
(

,
)

i 1

i

kstat i =
! + ="

=
=#

$#
%
&

' (1)

with

()
()

()

1

(1)

accessTimes k
tat k

accessTime k accessTime

!
=

!

Equation(1) shows tat(k) is the average access times in a
unit time for k-th access, that is, the k-th access frequency.
The value of tat(k) is related to total number of times the
tile is accessed and current access time, and reflects the
long-term access characteristic as a Zipf distribution and
access spatial distribution. It considers two access spatial

factors: the spatial distance between current accessed tile
and the tile in cache, and the difference of spatial distance
between current accessed tile and the tile in cache. stat(i) is
the accumulated value of access times in a unit time under
the i-th access time. It reflects the temporal locality and
considers two temporal factors: the interval time between
current access time and previous accessed time of a tile,
and the difference between previous intervals.

() ()

() ()()
2

2

accessTime k accessTime 1

accessTime j accessTime j 1

accessTime(j)

k

j

k

j

=

=

!

= ! !

= "

#

#

 (2)

Equation (2) shows that the i-1 previous accesses are all
involved in the operation for stat(i). Thus, both the total
number of times a tile is accessed and each access to a tile
work on the value of stat.

To reducing the complexity of the Stat algorithm and
eliminate the uneven distribution of locality for spatial
access, stat can be shortened to (3) and (4), where i is the
i-th access:

() 1 1

2
stat i (1)

i

k
t stat i t
! !

=
= " = ! + "#

(3)

with

∆t =accessTime(i) - accessTime(i-1) (4)
Thus, the Stat algorithm considers that the access

probability p is in direct proportion to total number of
times a tile is accessed and is inversely proportion to
interval time. As (5)

1

~ totalAccessTimes

~

p

and

p t!"

 (5)

Equation (3) accumulates the reciprocal of each ∆t
value for the value of stat. The interval time between
adjacent access points is used to replace the average value
of multi-access frequency. It can reflect the uneven access
in an actual WebGIS. The more a tile is accessed, the
higher the stat value of the tile; the shorter the interval
time between two adjacent accesses, the higher the stat
value of the tile, as shown in Equ.3. The higher the stat
value, the higher the probability the tile will be accessed
again. The stat value of a tile which is not accessed for a
long time will gradually decrease. Thus, the stat value
indicates the cached value of a tile; therefore, a tile with a
lower stat value can be replaced. This method helps to
quickly identify the tile with the lower cached value and to
reduce the replacement frequency.

3. COLLABORATIVE REPLACEMENT METHOD
IN A HETEROGENEOUS DCCS

3.1 Cache index

A pyramid model for tiles is a valid method for storing
and managing geospatial data in a multi-resolution
hierarchy model. The idea is that by a block-and-layer
operation, different resolution layers are generated by
resampling from raw data. A layer of data is mapped onto
a specified number of pixels in a block to generate a tile
matrix. A tile with coordinates (tx , ty , ℓ)is on the matrix
on the ℓ-th layer, in line tx and row ty. The client
application calculates the coordinates of the center tile of

the current browsing view based on its longitude and
latitude, and it then requests the tile by providing its
coordinates (tx , ty , ℓ) to the server. The request format is
similar to URL=http://WebGIS_server_address/tile.
aspx?L= ℓ&X=tx&Y=ty&.

A high-efficiency cache index should be built for DCCS,
in order to carry out operations such as create, query,
update, and delete for cache management; when the
number of cached tile achieves the replacement threshold
value, the cache index can help to implement the cache
replacement algorithm. Taking a tile as a unit, this paper
builds an index for caching tiles based on the pyramid
model. As shown in Fig.1, the Hash function and linear
linked chains are used to build a cache index CacheIndex.
The triplet coordinates (tx , ty , ℓ) of tile as the key
variable are mapped to a table entry h (0 <=h <=H) using
the Hash function. When mapping conflict happens, the
tiles that have the same Hash value are stored in the same
linear linked chain. Thus, the index can complete a query
operation with Time Complexity O(1*n)(where n is the
length of the linear linked chain that connects with table
entry h) and locate the requested tile in the DCCS quickly.

Fig. (1). Cache index

In a linear linked chain, each node is an array
Tilecached with size 7. Tilecached[0] is the coordinate of
tile (tx , ty , ℓ), Tilecached[1],as ServerNo, is the
identifier of the cache server in which tile (tx , ty , ℓ) is
cached, Tilecached[2] is the store offset in the cache.
Tilecached[1] and Tilecached[2]can help to locate the
cached tile in the cluster-based cache, in order to obtain the
tile data quickly and return the tile to the user, reducing the
response delay. Tilecached[3], as firstVisitedTime, records
the first request time for tile (tx , ty , ℓ). Tilecached[4], as
lastVisitedTime, records the latest request time for tile (tx
, ty , ℓ). Tilecached[5], as totalAccessTimes, records the
total access times for tile (tx , ty , ℓ), and Tilecached[6]
records the latest stat value for the latest access of tile (tx ,
ty , ℓ), which is the replacement attribute value. In each
linear linked chain of table entry h, each node is sorted in
descending order by stat value. The end node has the
lowest stat value. Thus, during cluster-based cache
replacement, only the end node of each linear linked chain
is compared and the tile with the lowest stat value is

replaced. This can reduce search time in the replacement
process.

Because the cluster-based servers are heterogeneous,
each server has a different cache capacity(CC) and service
processing capacity(SPC, the capacity that the number of
requests the sever can process in a unit time), as Fig.(2).
We should setup another two-dimensional index,
ServerCaching[n][4], to record the caching state of each
server for cache management and replacement. N is the
number of cluster-based cache servers,
ServerCaching[i][0], as cacheSize, is the cache capacity
of server Si. ServerCaching[i][1],as cachedSize, is the
used cache size of server Si. ServerCaching[i][2] is the
SPC of server Si. ServerCaching[i][3], as current Service
Request, is the number of requests that the server is
currently processing (Current Service Request, CSR).

3.2 Replacement flow and collaboration in DCCS

For a set of DCCS servers S={Si,1≤i≤N}, each server
has a different SPC and CC, as shown in Fig.(2). The
cluster supervisor manages and harmonizes cluster-based
servers, to ensure the DCCS is available and scalable.
Based on the simplest management rule and the different
capacity of each server, considering both cached tiles and
non-cached tiles, the basic idea of DCCS collaboration for
the replacement method is that the server with the highest
SPC value will process more tile requests and cache more
tiles as its cache capability will allow in order to achieve
load balancing for heterogeneous DCCS and optimal
performance for cluster-based service response. Service
flow is as shown in Fig.(3), and is explained below.

Step1. Request to tile (tx , ty ,ℓ) arrives; cluster
supervisor computes h-value for tile (tx , ty , ℓ) based on
the Hash function. Retrieve the h-th linear linked chain
connected with table entry h for tile (tx , ty ,ℓ). If tile (tx ,
ty ,ℓ) is found, this is known as a cluster cache hit and the
Tilecached node of tile (tx , ty ,ℓ)from h-th linear linked
chain is returned. According to Tilecached[1] (ServerNo.)
and Tilecached[2] (cacheStoreOf f set) , locate tile (tx
, ty ,ℓ) in the cluster-based cache and return the tile data to
the user; modify Tilecached[4] (currentTime) and modify
the stat value in Tilecached[6] based on Equ.3.Move the
node of tile (tx , ty ,ℓ)to the correct location in the h-th
linear linked chain. If retrieve fails, then a “no
cluster-cache hit” occurs, so proceed to step 2.

Step2. Send request to tile (tx , ty ,ℓ) to the back-end
cluster-based store servers, retrieve tile (tx , ty ,ℓ) and
return the data to the cluster supervisor and the user.

Step3. Cluster supervisor judges whether the DCCS
has reached the replacement threshold. If it has, compare
the stat value of the end node of each linear linked chain in
the CacheIndex, get the node with the lowest stat value
and replace the new arriving tile (tx , ty ,ℓ) with the
outdated tile (tx’,ty’,ℓ’). Maintain the CacheIndex by
deleting the node of tile (tx’,ty’,ℓ’) and inserting the node
for tile (tx , ty ,ℓ) into the correct linear linked chain
based on its Hash value.

Step4. If the DCCS has not reached the replacement
threshold, select the cache server with the highest value of
left SPC(the value is calculated by SPC–CSR) and has
space for caching tile (tx,ty,ℓ). Insert the node of tile
(tx,ty,ℓ) into the correct linear linked chain based on its
Hash value.

Fig. (2). Heterogeneous DCCS

Fig. (3). Replacement flow and collaboration in a Heterogeneous

DCCS

4. SIMULATION AND RESULT ANALYSIS

To simplify the simulation to verify the advantages of
cache replacement methods, we used 90-m global Shuttle
Radar Topography Mission (SRTM) terrain data, with tiles
of size 128×128. In the simulation, 12 distributed
cluster-based caching servers were connected using a
1,000-Mbps switch to form a fast Ethernet. A cluster
supervisor with sufficient processing power was placed at
the entrance of the distributed system to prevent
forwarding bottlenecks. The requests to tiles can be
express as a Poisson distribution [23] in networked
systems. Thus, in this simulation, tile requests were
100,000 following a Poisson distribution. The simulations
used the replacement method proposed in this paper, and
compared it with classic methods, such FIFO [7], LFU
[8],LRU [7], and TAIL (Tile Access average Interval time
Longest) [20].

The cache size in a DCCS is an important efficiency
factor for a distributed cache replacement strategy. The
relative size of the cache (RSC) is the ratio of the cache
size to the total size for the tiles requested. Therefore,
simulations in which RSC were varied were carried out to
compare the cache replacement performance in terms of
the cache hit rate and average request response time.

4.1 Cache hit rate (CHR)

CHR is an important indicator to verify the efficiency of
a cache replacement method, which reflects the availability
of cache replacement. CHR is the ratio of the direct

response by a cluster-based cache for tile requests to the
total number of tile requests. Fig.(4) shows the CHR of
FIFO, LFU, LRU, TAIL and Stat using different RSC. It
indicates that cache hit rate is increases approximately
linearly with the cache size. CHR of Stat increased rapidly
compared to the other methods when the RSC was
between 40% and 70%. FIFO and LRU take temporal
locality into account while LFU takes spatial locality into
account; thus, they both perform more weakly than TAIL
and Stat, which consider both temporal locality and spatial
locality. When RSC is lower(10%–30%), CHR of Stat is
around 5% higher than TAIL; while RSC is between 40%
and 70%, CHR of Stat is around 10% higher than TAIL.
This shows that the replacement frequency is higher under
lower CHR; Stat and TAIL both reflect the average access
frequency in the short term, so they show little difference
in CHR. When RSC increases, Stat reflects a long-term
accumulated access frequency and access stationarity,
while TAIL only reflects average access frequency for the
short-term. Thus, Stat considers both temporal locality and
spatial locality, while balancing the short-term and
long-term access popularities.

Fig. (4). Comparison of cache hit rates

Fig. (5). Comparison of average request response time

4.2 Average response time (ART)

ART can reflect the advantages of DCCS, and different
cache replacement methods have different influences on
the performance of a DCCS. From Fig.5, we can see that
the ART of the five methods decreases as cache size
increases. Stat's ART is 15% to 19% lower than FIFO,
10% to 15% lower than LRU, 10% to 17% lower than
LFU, and 4% to 11% lower than TAIL. This shows that
Stat provides more advantageous service performance than
the other three methods for large-scale users. Stat can
balance the different capacities of heterogeneous servers

and use them to the best of their capacities. Furthermore,
considering the long-term access characteristics and access
spatial and temporal locality, Stat shows lower
replacement frequency, reducing operations in the cache.
Using the Hash function and linear linked chain to manage
the cache, Stat accelerates the retrieval process and reduces
response time, which means that the DCCS can service
more users and increase its service capacity.
5. CONCLUSION

Access to geospatial data not only has characteristics of
spatial and temporal locality, but also has features of
long-term and short-term popularity in WebGIS. This
paper proposed an expression for replacement feature by
balancing the temporal locality and spatial locality of
access to tiles, which embodying both long-term
popularity and short-term popularity of access to tiles.
Since cluster-based cache servers in a heterogeneous
DCCS have different cache capacities and service
processing capacities, this paper then proposed a
collaboration method for cache replacement in DCCS,
which used Hash function and linear linked chain to do
cache management and replacement quickly. In future
work, we will study the access pattern of spatial transfer
based on time series during roaming for community users
to find a more precise expression for spatial-temporal
locality and to improve the performance of the
replacement method. However, such an investigation
should include large amounts of data from user access
logs.
CONFLICT OF INTEREST

The author confirms that this article content has no conflict
of interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (Grant No. 41371370).

REFERENCES

[1] J.H. Gong, “Man-Earth Relationships Based on Virtual
Geographic Environments,” in 6th Nat. Conf. Cartography
GIS Conf., Wuhan, Hubei, China, Oct. 30, 2006.

[2] D. Fisher, “How We Watch the City: Popularity and Online
Maps,” Workshop Imaging City, ACM Comput.-Human
Interaction, San Jose, CA, USA, May 2007.

[3] Q. Li, Y. Zheng, X. Xie, Y.K. Chen, W.Y. Liu, and W.Y.
Ma, “Mining User Similarity Based on Location History,”
16th ACM SIGSPATIAL Int. Conf. Geograph. Inf. Syst.,
Irvine, CA, USA, Nov.5-7, 2008.

[4] N. Talagala, S. Asami, D. Patterson, B. Futernick, and
D. Hart, “The Art of Massive Storage: A Web
Imagearchive,” IEEE Computer, Society, vol.33, no.11,
Nov. 2000, pp. 22-28.

[5] R. Li, R. Guo, Z. Q. Xu and W. Feng, “A Prefetching
Model Based on Access Popularity for Geospatial Data in
A Cluster-based Caching System,” Int. J. Geograph. Inf.
Sci., vol.26, no.10, Oct. 2012, pp. 1831-1844.

[6] G. Barish, and K. Obraczke, “Workd Wide Web Caching:
Trends and Techniques,” IEEE Communications Magazine,
vol.38, no. 5, May 2000, pp. 178-184.

[7] A. Dan, and T. Don, “An Approximate Analysis of The
LRU and FIFO Buffer Replacement Schemes,” Proc. ACM
SIGMETRICS Performance Evaluation Review, Boulder,
CO, USA, vol.18, no.1, May 1990, pp. 143-152.

[8] D. Lee, J. Choi, J.H. Kim, S.H. Noh, S.L. Min, Y. Cho, and
C.S. Kim, “On The Existence of A Spectrum of Policies

That Subsumes The Least Recently Used (LRU) and Least
Frequently Used (LFU) Policies,” ACM SIGMETRICS
Performance Evaluation Review, 1999, pp. 134-143.

[9] S. Podlipnig and B. Laszlo, "A survey of Web Cache
Replacement Strategies," ACM Computing Surveys
(CSUR), vol.35, no.4, 2003, pp.374-398.

[10] P. Cao, and I. Sandy, "Cost-Aware WWW Proxy Caching
Algorithms," USENIX Symposium on Internet Technologies
and Systems, Montery, CA, USA, vol.12, no.97, Dec. 1997.

[11] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and
E.A, “Removal Policies in Network Caches for World-wide
Web Documents,” Proc. ACM SIGCOMN96, 1996, pp.
293-305.

[12] J. C. Bolot and P. Hoschka, “Performance Engineering of
the WWW: Application to Dimensioningand Cache
Design,” 5th International WWW Conf., May 1996.

[13] K.Y. Wong, "Web Cache Replacement Policies: A
Pragmatic Approach," IEEE Network, vol.20, no.1, 2006,
pp. 28-34.

[14] K. Cheng, and Y. Kambayashi, “LRU-SP: A Size-Adjusted
and Popularity-Aware LRU Replacement Algorithm for
Web Cching,” 24th Annual International Computer
Software and Applications Conference, Oct. 2000, pp.
48-53.

[15] M.N.K. Boulos, “Web GIS in Practice III: Creating A
Simple Interactive Map of England's Strategichealth
Authorities Using Google Maps API, Google Earth KML,
and MSN Virtual Earth Map Control,” International
Journal of Health Geographics, vol.4, 2005, pp. 22.

[16] D.G. Bell, F. Kuehnel, C. Maxwell, R. Kim, K. Kasraie, T.
Gaskins, P. Hogan, and J. Coughlan, “NASAWorld Wind:
Opensource GIS for Mission Operations,” IEEE Aerospace
Conference, March 2007, pp. 1-9.

[17] Y.K. Kang, K.C. Kim, and Y.S. Kim, “Probability-Based
Tile Pre-Fetching and Cache Replacement Algorithms for
Web Geographical Information Systems,” Databases and
Information Systems, vol.2151, 2001, pp. 127-140.

[18] F. Wang, “Design and Implementation of Web-Based GIS
for Forest Fragmentation Analysis,” Diss. West Virginia
University, 2002.

[19] H. Wang, Z.W. Yu, W. Zeng, and S.M. Pan, “The Research
on The Algorithm of Spatial Data Cache in Network
Geographic Information Service,” Acta Geodaetica et
Cartographica Sinica, vol.38(4) , 2009, pp. 348-355.

[20] D.J. Unwin, “GIS, Spatial Analysis and Spatial Statistics,”
Human Geography, vol.20(4) , 1996, pp. 540-551.

[21] L. Shi et al, “Quantitative Analysis of Zipf ’s Law On Web
Cache,” LNCS, vol.3758, 2005, pp. 845–852.

[22] R. Li, Y.F. Zhang, Z.Q. Xu, and H.Y. Wu, “A
Load-Balancing Method for Network GISs in A
Heterogeneous Cluster-Based System Using Access
Density,” Future Generation Computer Systems, vol.29, no.
2, 2013, pp. 528-535.

