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Abstract: The data analysis problem of step-stress accelerated life testing with exponential distribution is 

discussed. At the step-stress accelerated life testing conditions, an approximate E-Bayesian parameter es-

timation of step-stress accelerated life testing with exponential distribution is given by considering the prior dis-

tributions of the hyperparameters and using Gibbs sampling method. Finally, a simulation example is given, the re-

sults show that the Gibbs sampling method is simple and the convergence is better. E-Bayesian parameter estima-

tion is more effective than the maximum likelihood estimation. 
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1. Introduction 

With the development of technology and the improvement of the products quality, high reliability and long-life 

products are more and more. At normal working conditions, the implementation of life testing can not meet the re-

quirements of reliability evaluation. Accelerated life testing is a life testing method that is used to shorten the life 

testing cycle by increasing the stresses. Accelerated life testing method can be used to assess the reliability of the 

products in a relatively short period of time and to identify the reasons for product failure. Accelerated life testing 

data analysis and parameter estimations are theoretical and practical application value. 

Step-stress accelerated life testing (briefly step-stress life testing) is an important life testing of accelerated life 

testing. In recent years, using the given statistical model of step-stress life testing with exponential distribution, the 

paper [1] gave the statistical analysis method for type Ⅱcensoring life testing samples; the paper [2] gave the neces-

sary and sufficient condition for the existence and uniqueness of the MLE of the step-stress life testing in typeⅠ 

and Ⅱ censoring cases and got the approximate confidence interval of the mean life at the normal stress level on 

that basis; in type Ⅱ censoring case, the paper [3] got the Bayesian parameter estimation with constraints of step-

stress life testing under the exponential distribution; the paper [4] gave an approximate Bayesian parameter estima-

tion for step-stress life testing under the exponential distribution; the paper [5] gave a hierarchical Bayesian parame-

ter estimation for step-stress life testing under the exponential distribution.  
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Although in typeⅡ censoring case, the Bayesian parameter estimation for step-stress life testing with exponen-

tial distribution was given in the papers [3-5], on the one hand there is no a good consideration on the parameters in 

the prior distributions; on the other hand the calculation of the posterior marginal distribution function involves 

complex integral calculations. Based on the above considerations, the E-Bayesian method is given for parameter 

estimation of step-stress life testing with exponential distribution in this paper. Prior distributions of the hyper-

parameters in the prior distribution are also given, thus the joint posterior density function is got. For the calculation 

of the parameter estimation in the joint posterior density function, Gibbs sampling is used for the iteration of pa-

rameters to be estimated. Finally, a simulation example is given to analog comparator the E-Bayesian estimation 

and the maximum likelihood estimation, the results show that the E-Bayesian estimation is more effective than the 

maximum likelihood estimation. 

This paper is organized as follows: In Section 2, the basic assumptions for step-stress life testing are stated. E-

Bayesian estimations of step-stress life testing parameters are stated in Section 3. The estimation of the reliability 

indexes with exponential distribution in Section 4. An example is given to illustrate the proposed procedure in Sec-

tion 5. The conclusion of this study is given in Section 6. 

2. The Basic Assumptions of Step-stress Life Testing 

Determine the normal stress level S0 and the accelerated stress levels S1 , S2 ,…,Sk, the stress levels meet 

S0<S1<S2 < …<Sk, n samples are taken from a number of products for step-stress life testing. 

At the stress level Si, the working time of the failure products are 0≤ti1≤ti2≤… i
irt ≤τi. In the case of typeⅠ cen-

soring, τi is the pre-given time for stopping the tests at the stress level Si, ri is the number of failure products before 

the time τi at the stress level Si; in the case of typeⅡ censoring, ri is the pre-given number of samples for stopping 

the tests. 

Assumption 1. At the normal stress level S0 and the accelerated stress levels S1<S2 < …<Sk, the life distribution 

of a test unit all obey the exponential distribution, its cumulative distribution function is: 

[ ]( ) 1 exp ( )i i i it tS SF != " " , t �0                           (2.1) 

where λi(Si) >0 is the failure rate of the products at the stress level Si, its mean life is  

θi(Si)=1/λi(Si) 

Assumption 2. The mean life of the products: θi is the accelerated life function of the stress: 

                           ln θi=µ+β φ(Si)                                  (2.2) 

where µ, β is parameters to be estimated; φ(Si) is the known function of the stress level Si. 

Assumption 3. Residual life of the products depends only on the already cumulative failure part and the stress 

level at that time, but has nothing to do with the cumulative [6]. 

 

 

 



 

 

3. E-Bayesian Estimation of Step-stress Life Testing Parameters 

3.1. The Likelihood Function of Step-stress Life Testing Parameters  

For step-stress life testing data with exponential distribution, the failure data t11,t12,…,
1

1t r
are the life data of the 

samples at the stress level S1; but the failure data is not the real life of the samples at the stress level Si when i >1. 

Therefore, the failure data need to be converted into the real life data. 

According to Assumption 3, the cumulative failure probability at the stress level Si when   the samples’ working 

time is ti equivalent to the cumulative failure probability at the stress level Sj when the samples’ working time is tij. 

That is to say: 

                   ( ) ( )
i jiS S ijt tF F=  i, j=1,2,…,k. 

Then according to assumption one, we can get: 

              [ ]1 exp ( ) 1 exp ( )i i i j j ijS t S t! !" " = " "# $% &  

So, 

 i i
ij

j

t
t

!
!

= ,  i, j=1,2,…,k.                         

Let 
1

i j

i

j

R r=

=
! , i=1,2,…,k, so the total testing time at the stress level Si is:  

1

( )
i

i i iij
j

t n
r

T R !
=

= + "#
,  (typeⅠ Censoring case) 

1

( )
i

i

i i i rij
j

t n
r

tT R
=

= + !"
,  ( typeⅡ Censoring case) 

Thus according to relevant theorems, the likelihood function is got�  
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where D=� t11,…,
11rt , t21,…,

22rt ,…,tk1,…,
kk rt �,  λ1≤λ2≤…≤λk. 

According to Assumption 2, for λi=1/θi, we can see�  
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So the likelihood function (3) can be converted to: 

         1
20 00( , ) exp( )r TL T!" ! ""= #                                (3.2�  
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Now, there are only two parameters in the likelihood function (3.2). In the actual production, people are most 

concerned about the failure rate at the normal stress level λ0 and the acceleration factor α. 

3.2. Definition of E-Bayesian Estimation  

Definition 1 [7]. With ( , )i a b!
"

being continuous, 

iE ( , ) ( , ) [ ( , )]i i

D

a b a b dadb E a b! ! " !
# # #

= =$$                                      (3.3) 

is called the expected Bayesian estimation of λi (briefly E-Bayesian estimation), where ( , )i a b!
"

is Bayesian estima-

tion of λi with hyperparameters a and b, D is the domain of (a,b), and π(a,b) is the density function of a and b over 

D. 

By Definition 1, the E-Bayesian estimation of λi is the expectation of the Bayesian estimation of λi for the hy-

perparameters a and b. The E-Bayesian estimation of λi is not Bayesian estimation or hierarchical Bayesian estima-

tion [8], it can be seen as a kind of modified Hierarchical Bayesian estimation. The E-Bayesian estimation method 

have wide scope potential applications in many fields [9,10]. 

3.3. The Prior Distribution of the Parameters λ0, α and the Joint Posterior Density Function. 

Based on the engineering experience, the range of the acceleration factor: α is 1≤ k1� α � k2, for this, take the 

prior density function of α as:  

          1( )! !" #= ,  1≤k1� α � k2                         (3.4�  

If the prior distribution of λo be its conjugated distribution—Beta (a, b) with density function as follows: 
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= !"  is the Beta function, a>0, b>0, both a and b are hyper-

parameters 

In the case of modern high-reliability products, the possibility of the failure rate λo being larger is smaller than 

the possibility of the failure rate λo being smaller. For this, according to the paper [8], a and b should be chosen so 

that π(λ0|a,b) is a decreasing function of λ0. When 0<a<1, 1<b, π(λ0|a,b) is a decreasing function of λ0. To determine 

the specific value of a, b is very difficult, for the two hyperparameters are unobservable and the information ob-

tained in practical application is insufficient to determine the value of a, b. Therefore, a uniform distribution can be 

respectively defined over the range of a and b as the prior distributions of hyperparameters a and b. For this, take 

the prior distributions of hyperparameters a, b as follows: 

                           π1(a)=U(0,1),  π2(b)=U(1,c) 

where c is a constant.  



 

 

Considering that in the case of a<1, the bigger b is, the thinner is the tail of the Beta density function. But in 

view of the robustness of the Bayesian estimation, the thinner tailed prior distribution often leads to the worse ro-

bustness of the Bayesian estimate. Accordingly, b should not be too big, it is better to be chosen below some given 

upper bound c (c > 1 is a constant to be determined) 

When the parameters a, b is of independence, according to the Definition 1, we can get the prior density 

function of λ0:  
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So by the prior density function of α and λ0: (3.4)and (3.5) ,as well as the likelihood function (3.2), ac-

cording to Bayesian theorem, we can get its joint posterior density function, then according to Definition 1,we 

can get the E-Bayesian joint posterior density function of (λ0,α,a,b): 

      ) 1
0 00 0 2

1 11 1( , , , (1 ) exp( )
( , )

br a Ta b T T
B a b

! "# # "# #
$+ $ $% $ $            (3.6) 

where T=(n, ri, τi, tij, j=1,2,…, ri, i=1,2,…,k) 

3.4. The E-Bayesian Estimation of the Parameters λ0 and α 

The problem of using Bayesian method for statistical inference is the calculation of the posterior marginal dis-

tribution function. In many cases, it is difficult or even impossible to obtain the analytic expression of the posterior 

marginal distribution function, sometimes we can get the analytic expression but the results are rather complicated 

that is not easy for application and promotion. Therefore, this paper uses Gibbs sampling approach for the iteration 

of parameters to be estimated, the mean of the parameters to be estimated is obtained. The biggest advantage of the 

approach is implementing simple and with the convergence of iteration. 

3.4.1. Gibbs Sampling 

MCMC (Markov Chain Monte Carlo) method is through the establishment of the Markov chain with a stable 

distribution to obtain the samples of p(θ|xn), then make statistical inference for the samples obtained . One of the 

most simple and extensive application of MCMC methods is Gibbs sampling method. It was proposed by S. Geman 

and D. Geman in 1984 [11]. 

Take random variables as θ1,θ2,…,θk, assume its full conditional distribution p(θs|θr) (r≠s), s=1,2, …,k is available 

sampling, that is to say, when a set of values for random variable θr (r≠s) are given, we can generate a random sam-

ple of θs. The paper [12] proved that at appropriate conditions, the joint distribution function p(θ1,θ2,…,θk)  was 

only decided by the full conditional distribution , so all of the marginal distribution function p(θs), s=1,2, …,k are 

only determined by the full conditional distribution. 

Gibbs sampling process is as follows: the starting point is given θ(0)=(θ1
(0),θ2

(0)…,θk
(0)), 
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    (1) Sampling θ1
(1) from the full conditional distribution p(θ1|xn,θ2

(0),…,θk
(0)) ; 

    (2) Samplingθ2
(1) from the full conditional distribution p(θ2|xn,θ1

(1),θ3
(0),…,θk

(0)); 

…; 

    (i) Samplingθi
(1) from the full conditional distribution p(θi|xn, θ1

(1),θ2
(1),…,θi-1

(1),θi+1
(0),…,θk

(0)); 

…; 

(k) Samplingθk
(1) from the full conditional distribution p(θk|xn,θ1

(1),…, θk-1
(1)). 

Repeat the above � to (k) steps, after t-steps iterations; we can get a Markov chain: 

θ(1)=(θ1
(1),θ2

(1)…, θk
(1))�  

θ(2)=(θ1
(2),θ2

(2)…, θk
(2)) 

…�  

θ(t)=( θ1
(t),θ2

(t)…, θk
(t)) 

The sample which make Markov chain reach equilibrium can be as a sample of p(θ|xn). 

The fact can be proved that at appropriate conditions, when Iteration times t→∞, then  

p( θ1
(t),θ2

(t)…, θk
(t)) →p(θ1,θ2,…,θk) 

Hence, an estimation of the marginal distribution we need can be got [13]: 

              ( )ˆ ( ) ( , )
t

s s r
f f r s! ! != " . 

The convergence of the iteration sampling is determined by t. 

3.4.2. The Gibbs Sampling Process of the Parameters λ0, α, a and b 

By the E-Bayesian joint posterior density function (3.6), we can see that the full conditional posterior probabil-

ity density function of λ0 is: 

) 20 0 00

11( , , , (1 ) exp( )br a
a b T T! "# # ##

$+ $% $ $ . 

The full conditional posterior probability density function of α is: 

) 1
20 0

1( , , , exp( )Ta b T T! " # " #$% $ . 

The full conditional posterior probability density function of a is: 

)0 0( , , , / ( , )a
a b T B a b! " # #$ . 

The full conditional posterior probability density function of b is: 

)0 0( , , , (1 ) / ( , )b
b a T B a b! " # #$ % . 

The random number for the full conditional posterior distribution of λ0, α, a and b can be produced by selected 

sampling method. 

According to the steps of Gibbs sampling method, the starting point is given as (λ0
(0), α(0), a(0) , b(0) ),  then the t 

time iteration is divided into the following four steps: 

(1) Sampling λ0
(t) from the full conditional posterior distribution π(λ | T, α(t-1), a(t-1), b(t-1)). 



 

 

(2) Sampling α(t) from the full conditional posterior distribution π(α | T, λ0
(t),a(t-1), b(t-1)). 

(3) Sampling a(t) from the full conditional posterior distribution π(a | T, λ0
(t), α(t), b(t-1)). 

(4) Sampling b(t) from the full conditional posterior distribution π(b | T, λ0
(t), α(t), a(t)). 

Then (λ0
(t), α(t), a(t) , b(t), t=1,2,…n,n+1,…,N ) is a Gibbs iteration sample of parameters (λ0, α, a, b), where n is 

the discarded sample size before Gibbs iterations have got a steady state, N� n  is the overall sample size. 

We only care about the failure rate at the normal stress level: λ0 and the acceleration factor α, so the E-Bayesian 

parameter estimation of λ0 and α are respectively: 
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4. The Estimation of the Reliability Indexes with Exponential Distribution 

Our ultimate goal is to get the estimation of the product mean life at the normal stress level: θ0, then according 

to the assumption two and the accelerated life equation (2.1), the parameters µ and β in the accelerated life equation 

are estimated. Thereby, the accelerated life model is established. 

According to the Assumption 2, the mean life is θi(Si)=1/λi(Si). So the first reliability index which is the mean 

life is got:  

0
0

ˆˆ 1/ !" =  

Using the E-Bayesian parameter estimation of the failure rate 0!̂ , the second reliability index which is reliability 

is obtained: 

R(t)=exp(-λt)=exp(- 0!̂ t) 

Then according to the accelerated life equation (1), we have ln 
0!̂ =µ +βφ(S0), using the least square method to 

get a distribution curve with various points (µ, β), the approximation of the parameters µ and β can be estimated : 

µ= µ̂ , β= !̂ . Thereby, we can establish the accelerated life model: 

ln θi= µ̂ + !̂ φ(Si). 

5. A Simulation Example 

Now there are a number of electronic products, their life obeys the exponential distribution, 40 samples are 

taken from the products for the four-steps step-stress accelerated life testing. The normal stress level is 

S0=28V(volt), take accelerated stress levels as S1 =38V, S2=41V, S3=44V, S4=47V, the censoring time of each step is τ1 

=1000h(hour), τ2=600h, τ3=250h, τ3 =125h. Accelerated life equation lnθ=68-16lnS is Pre-given, where the parame-

ters µ=68, β= -16. Using Monte-Carlo method to obtain a set of lifetime data: 
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Table 1 Step-stress life testing data of the electronic products 

t11      
921.2852h      

t21 t22 t23 t24 t25  
50.4314h 104.2676h 245.5130h 450.5856h 558.9485h  

t31 t32 t33 t34 t35 t36 
49.7372h 67.1302h 112.7626h 179.0157h 214.0247h 233.9544h 

t41 t42 t43 t44   
50.7118h 103.6320h 112.0713h 115.0968h   

First using the method in the paper [2] parameters µ, β in the accelerated life equation are estimated, the MLE of 

µ, β are respectively: µ̂ =61.2955, !̂ =�1 4.2498. Then from the accelerated life equation, we can get the estimation 

of the failure rate: 0!̂ =1.0033×10� 6 and the estimation of the acceleration factor: !̂ =77.6047. 

Next, E-Bayesian method is used to estimate the above parameters. Take the uniform distribution over 

(100,150) as the prior distribution of α, take Gibbs sampling iteration times N =5500, the initial value are given as 

λ0=0.1, α=100, a=0.1, b=20. The fact can be found that the parameters basically reach a steady state after the 500 

iteration steps .Therefore, the E-Bayesian estimation of the parameters λ0 and α are obtained from the mean of 5000 

samples after n = 500 steps, then we can get the estimation of the failure Rate:  0!̂ =4.3107×10� 7 and the estimation 

of the acceleration factor: !̂ =129.2715, furthermore, we can get the estimation of parameters µ and β are respec-

tively µ̂ =67.7083, !̂ =�1 5.9208. 

The results show that E-Bayesian parameter estimations are very close to the true values; however the parameter 

estimations which are obtained by the MLE method have a larger difference with the true values. 

6. Conclusions 

Using the E-Bayesian method, the parameters estimation and the reliability indexes estimation for step-stress 

accelerated life testing with exponential distribution are given. The values of the hyperparameters in the prior distri-

bution are avoided. Using Gibbs sampling for the calculation of the posterior marginal distributions and parameter 

estimation, the calculation with high-dimensional integrals is avoided. Finally, the fact can be seen that E-Bayesian 

parameter estimation is more effective and practical than the maximum likelihood estimation from the simulation 

example. 
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