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Abstract: As an important part of the smart grid, Electric Vehicles (EVs) could be a good measure against energy 

shortages and environmental pollutions. In this paper, based on the relevant EVs development policy, the private EVs 

charging load is investigated. Based on statistical data, the Monte Carlo method is applied to determine the one-trip driven 

distance for the private EV. And by analyzing the EVs driving habit and the charging characteristics of EVs battery, we 

derive the initial state-of-charge (SOC) of charging, charging power and initial charging time. As a result, a more accurate 

mathematical model of computing the charging load accused by private EVs is proposed. Furthermore, the EVs charging 

loads in 2015 and 2020 are computed and compared in plug-in charging and wireless charging mode. The results of 

simulation show that the daily load peak of private EVs charging caused by wireless charging mode is significantly lower 

than that of plug-in charging mode. And the charging load of large-scale EVs would have significant impacts on the 

planning and operation of power grid. It is very important to predict and analyze the EVs charging load for the 

construction and scheduling of the smart grid in the future. 

Keywords: Wireless charging, charging load, prediction, private EVs. 

1. INTRODUCTION 

 The preceding scarcity of crude oil, serious 

environmental pollutions, growing carbon dioxide emissions 

and other factors initiated a "green" economy, resulting 

partly in the strive for more efficient individual 

transportation. Compared with Internal Combustion Engine 

Vehicles (ICEVs) which burn fossil fuels, Electric Vehicles 

(EVs) show the potential for solving the energy crisis and 

reducing the emissions of carbon dioxide. More and more 

governments, car manufacturers and energy companies have 

paid attentions on EVs and are getting active in EVs’ 

development and production. July 9, 2012, China’s State 

Council officially promulgated the “energy-saving and new 

energy automotive industry development plan (2012-2020)”, 

and clearly pointed out that pure electric drive would be the 

main strategic orientation of the auto industry restructuring 

plan and the development of the automotive industry would 

focus on promoting the industrialization of Pure Electric 

Vehicles (PEVs) and Plug-In Hybrid Electric Vehicles 

(PHEVs) with the cumulative production and sales reaching 

500,000 by 2015, and up to 5 million by 2020 [1]. 

 Once a large-scale EVs access to the grid, there would 

lead to extra and undesirable electrical consumption peaks. 

Many scholars have studied on the influence of EVs on the 

distribution grid over the past decade. Clement-Nyns K et al. 

introduced the stochastic programming technique to predict 

the load profiles and applied the quadratic programming to 
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deal with the coordinated charging of PHEVs with one 
setting initial SOC and during a fixed period [2]. Shao S. et 
al. considered the varied EVs charging scenarios, but the 
initial charging time in every scenario was fixed [3]. Taylor 

J. et al. provided details of analytical framework to evaluate 

the impact of PHEV loading on the distribution system as 

part of a large, multi-utility collaborative study [4]. Luo Z. 

W. et al. investigated the charging modes and charging time 

of varied EVs [5]. Qian K. et al. calculated the EVs charging 

loads considering the price, EV charging scenario and 

permeability [6]. Now, the vast majority of researches are on 

the PHEVs or PEVs with wired charging model, rarely 

combined with the mileage of EVs in the acquisition of 

initial charging state and ignored the changing charging 

power during the charging process. 

Recently, based on the wireless power transmission 

technology, wireless charging mode for EVs has been the 

hotspot pursued by major research institutions and vehicle 

manufacturers [7-9], which would play a better role in the 

interaction between the grid EVs to realize load shifting and 

absorb the new energy resources. The wireless charging 

mode would become the development tendency of EVs 

charging 
[10-12]. Furthermore, this charging model could 

disperse continuous charging time and reduce charging 

aggregation, so that there is different in the charging load 

profiles. 

This paper aims at predicting the private EVs charging 

load profile. First, the characteristics of two different EVs 

charging models are simply analyzed. Then, a more accurate 

mathematical model is proposed to compute the private EVs 

charging load by applying Monte Carlo method to obtain the 



single trip mileage, initial SOC, initial charging time and 

charging power according to the characteristics of battery 

and the driving habits. Finally, based on the relevant EVs 

development policy of China, the private EVs scales until 

2015 and 2020 have been predicted and the load profiles are 

simulated respectively. 

2. EVS CHARGING LOAD MODELING 

 There are many factors to influence the EVs charging 

load profile, such as EVs scale, charging model, initial SOC 

of charging, initial charging time, changing power and 

battery capacity.  

2.1. Charging Model 

The vehicle charging mode and battery swap mode are 

the main energy supply models for EVs. Vehicle charging 

mode means that EVs charge directly to complete the energy 

supply while stopping, and there is great randomness in 

charging time and place. Battery swap model is an indirect 

energy supply for EVs by replacing the un-fully battery by 

fully charged battery in the swap station with the 

characteristics of charging concentrating and easy to control 

battery charging process. In this paper, the modeling and 

predicting of private EVs charging load is just based on the 

vehicle charging mode. 

Vehicle charging mode mainly includes two models: 

plug-in charging and wireless charging. Plug-in charging 

mode needs to build a large number of dedicated charging 

points or charging stations, while wireless charging mode 

could make fully and effectively use of land resources 

without the extra land and space by directly laying the power 

transmitting coils under the existing parking spaces or roads. 

Therefore, compared to the plug-in charging mode, the EVs 

wireless charging mode would disperse the charging time 

and reduce the charging aggregation. This model has more 

great interaction ability with the grid and plays an important 

role in load shifting. 

Considering the development tendency of EVs charging 

model and the maturity of wireless charging technology, this 

paper predicts the EVs charging load profile based on a 

certain proportion of the two charging models. Then the 

study on the impact of large scale EVs on the grid would 

become more comprehensively and the further researches on 

EVs coordinate charging scheduling would be carried out. 

2.2. Battery Characteristics 

A.  Battery SOC  

Many researches on battery characteristics have been 

comprehensively carried out [13, 14]. Corresponding to one 

charging current id, the battery status could be described by a 

battery SOC [15], 
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S t S t i dt C i= +          (1) 

Where, S(t1) and S(t2) represent the battery SOC at time t1 

and t2 respectively; Ca(id) stands for the battery effective 

capacity in Ah. 

According to the Peukert Equation [16], Ca(id) could be 

derived by the formula (2). 

a d d p d( ) * / ( )kC i i C i=                       (2) 

Where, Cp is the Peukert capacity of battery in Ah; k is the 

Peukert exponent with the range of 1.1 to 1.3. For one 

specific battery, these two parameters are constant and Cp 

could be derived as  

p N*( / )kC T C T=                         (3) 

Where, CN is the battery nominal capacity in Ah; T is the 

battery rated discharge time in h; CN/T stands for the battery 

rated discharge current in A. 

According to the formula (1) - (3), a new SOC of battery 

could be obtained while charging after a period of time. 

B.  Battery Charging Voltage 

Another obvious characteristic of EVs battery is that the 

charging voltage would be changed dynamically with the 

charging process. Taking into account the security issues, the 

lead-acid battery 240100 are mainly used to study in our 

laboratory, where 240100 indicates that the battery has the 

rated voltage of 240V and rated capacity of 100Ah. Fig. 1 is 

the relation curve of charging voltage and battery capacity. 
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Fig. (1). Curve of the charging voltage and battery capacity 

In Fig. (1), the battery charging voltage is gradually 

increased with the increase of battery capacity. When the 

battery capacity is less than 10% and greater than 90%, the 

magnitude of charging voltage would increase larger than 

battery capacity, and increase gently in the remaining range 

of battery capacity. 

2.3 Initial SOC of Charging 

In a charging period, the power demand for EV charging 

is varied with time. It is necessary to obtain initial SOC of 

charging to determine the load generated by EV charging. 

The initial SOC of charging is a random function on the 

driving mileage since the last charging. Statistics data show 

that the vehicle one driving mileage is closed to logarithmic 

normal distribution and its probability density function is as 

follows [6]: 
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Where, d is the vehicle one driving mileage in Km; μ and  

denote the mean and standard deviation of the probability 

density function. For private vehicles, μ = 20.5 km and  = 

4.88 km. Fig. (2) shows the probability density distribution 

of the private vehicle one driving mileage. 

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.05

0.1

0.15

0.2

0.25

 

Fig. (2). Probability density distribution of the private vehicle one 

driving mileage 

Assuming that the SOC of battery decreases linearly with 

the mileage, we could estimate the initial SOC of charging 

by vehicle's mileage as follows: 

i 0 fullSOC (SOC / ) 100%d d=        (5) 

Where, SOCi and SOC0 represent the initial SOC of charging 

and the SOC after the latest charging respectively. In 

general, SOC0 = 1. While in wireless charging mode, SOC0 

more often is not equal to 1 for dispersed charging time and 

charging locations.  is the EV travel times since the latest 

charging. dfull stands for the maximum mileage of the full 

charged EV in km. Then the probability density distribution 

of SOC after one travel could be derived as follows:  
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Compared to a typical dfull of 130 km, the one driving 

mileage of private EV is much shorter. So it is unnecessary 

for private EVs to charge after one travel and the means of 

SOC after one and two travel are closed to 84.2% and 68.5% 

respectively. 

2.4 Initial Charging Time 

Clearly, it is not possible that all of EVs begin to 

charging at the same time. The initial charging time of each 

individual vehicle is a random variable, which mainly 

depends on the electricity price and EV usage patterns. 

Assuming that the charging occurs as soon as EV stops at the 

destination, the initial charging time could be estimated by 

adding the departure time to the travel time.  

Private vehicles are mainly used to work and participate 

in entertainment at weekend. The departure times of driving 

to work and back home after work are all comparatively 

concentrated. Table 1 describes in detail the departure time 

of private vehicle and the corresponding percentage in one 

day based on the statistics data [17-18]. 

Tab. (1). Departure time and corresponding vehicle percentage of private vehicle 

 

In Tab. (1), there are two departure peaks at 6: 30-9: 30 

and 16: 00-19: 00. During the two durations the road would 

be blocked and the average speed of vehicle is relatively low 

and set to 40 kph. In other times, the private vehicles depart 

dispersedly and would have a high average speed of 60 kph. 

Therefore, the initial charging time could be calculated by 

random drawing driving mileage based on formula (4). 

Furthermore, for one private vehicle, there is an interval 

more than 8 hours between commuting to charge full in 

workday. In view of this, the limit of charging duration is 

ignored when accumulating the private vehicle charging 

load, and it is namely that all vehicles would be charged full 

from initial SOC of charging. 

2.5 Charging Power 

For the lead-acid battery with 100C rated capacity, the 

battery would be charged at 20A current and its charging 

duration from empty to full is closed to 5h. In figure 1, the 

charging voltage of the battery is varied with its capacity. As 

a result, the charging power would be changed. For batter 

predicting the load profile generated by EVS charging, the 

charging duration should be divided into k periods. For 

instance, if the period is set to half an hour, k would be 10, 

and 20 for the period of 15 minutes. At the beginning of each 

period, the battery capacity could be derived as follows 

Departure time Percentage Departure time Percentage Departure time Percentage Departure time Percentage 

0:00-5:00 0.43% 8:31-9:00 4.92% 12:00-14:30 3.99% 18:01-18:30 4.63% 

5:01-5:30 0.54% 9:01-9:30 1.55% 14:31-15:00 1.11% 18:31-19:00 4.43% 

5:31-6:00 1.58% 9:31-10:00 1.39% 15:01-15:30 1.06% 19:01-19:30 1.18% 

6:01-6:30 8.13% 10:01-10:30 0.48% 15:31-16:00 3.39% 19:31-20:00 2.94% 

6:31-7:00 25.04% 10:31-11:00 0.66% 16:01-16:30 5.31% 20:01-20:31 1.19% 

7:01-7:30 26.24% 11:01-11:30 0.83% 16:31-17:00 31.36% 20:31-21:00 0.26% 

7:31-8:00 19.64% 11:31-12:00 0.36% 17:01-17:30 19.58% 21:01-24:00 4.88% 

8:01-8:30 8.21%   17:31-18:00 14.06%   
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Where, tk-and tk+ denote the beginning and the end of the kth 

period respectively. S(t) and V(t) stand for the SOC and 

charging voltage at t time. It is obviously that V (tk+) > V (tk-) 

in figure 1. For more accurately predicting the charging load, 

the charging voltage during kth the period could be calculated 

as follows 

k- k+
k

( ) ( )
( )

2

V t V t
V t

+
=                    (8) 

Then, the charging power generated by all EVs in the kth 

period could be expressed as  

k j k k,j

1

( ( ) / )
n

j

P V t i
=

=                    (9) 

Where, n represents the number of EVs. Vj (tk) and id,j 

represent the charging voltage and charging current of the jth 

EV in the kth period respectively.  represents the charging 

efficiency with 85% for wireless charging mode and 95% for 

plug-in charging mode. 

3. SCALE ESTIMATION OF PRIVATE EVS 

By the above analysis, we could obtain the daily load 

profile of private vehicle charging. And as the large scale 

EVs access to the grid, the load caused by EVs charging 

would have a serious impact on to the grid. In "Chinese 

Automotive Industry Development Report (2012)," it has 

pointed out that by the end of November 2011, the total 

number of EVs participated in the demonstration running is 

about 11.5 thousand in 25 cities of China, which are mainly 

bus, taxi, private vehicle, office vehicle. The proportions of 

various EVs are as shown in Tab. (2) [19]. 

Tab. (2). Percentages of various EVs 

Vehicle type Proportion  Vehicle type Proportion 

Bus 65.52% Office vehicle 4.67% 

Taxi 15.52% Vehicle rental 1.11% 

Private 

vehicle 
11.24% 

Public domain 

vehicle 
1.95% 

 

As a good measure against energy shortages and 

environmental pollutions, the development of EVs has 

gained strong support of the government. Since last decade, 

the proportion of private vehicle has gradually increased year 

by year from 42.8% in 2001 to 76.12% in 2010. There is 

reason to believe that with the popularization of EVs, the 

proportion of private EVs would increase gradually to 30% 

in 2015 and 40% in 2020. According to data mentioned in 

the “energy-saving and new energy automotive industry 

development plan (2012-2020)”, the numbers of private EVs 

are about 0.15 and 2 million in 2015 and 2020 respectively. 

4. PREDICTION OF PRIVATE EVS CHARGING 
LOAD PROFILE 

For calculating the charging load profile of private EVs, 

we use Monte Carlo method to draw one driving mileage and 

derive the initial charging time, the initial SOC of charging 

and the charging power based on the relevant statistical data 

and the charging characteristics of battery. Fig. (3) shows the 

structure diagram of calculating the charging load of private 

EVs. 

 

Fig. (3). Diagram of EVs charging load calculation 

In wireless charging mode, EVs are more conducive to 

participate in the interaction with the grid, in which way the 

power could feedback to the grid if necessary, and play an 

important role in load shifting. Therefore, in Fig. (3), the 

private EVs should be recharged after one driving to ensure 

that the batteries of EVs have a relatively high SOC as far as 

possible. Of course, from the perspective of the impact on 

the grid, recharging after one driving is one of the most 

undesirable charging scenarios. 

Setting the number N of Monte Carlo simulation to 2000 

and the variance D less than 5e-4, the flowchart of the 

private EVs load calculation is as shown in Fig. (4). 

 

Fig. (4). Flowchart of private EVs charging load calculation 



 

With the increase of EVs, a new load growth caused by 

EVs charging would be more and more significant to the 

grid. There would be two load peaks occurred in the morning 

and evening, when they are the two travel peaks of going to 

work and coming back from work in a day. 

In wireless charging mode, the charging duration of 

private EV would be dispersed, and the ratio of charging 

occurring on the duty and off duty tends to be 0.5 to 0.5. As 

a result, the difference between the two peak loads would be 

small. For the plug-in charging mode, the percentage of 

charging in the resident parking lot after work would reach 

to 70% [5].  

Setting the charging period to 15 minutes, the charging 

load profiles of private EVs based on wireless charging and 

plug-in charging in 2015 are as shown in Fig. (5). 
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Fig. (5). Charging load profiles of private EVs in 2015 

In Fig. (5), due to disperse EV charging location and 

charging time, the private charging peak with wireless 

charging mode is 443.24 MW, decreased by 14.6% than that 

of 519.23MW with plug-in charging mode. Then the 

following simulations are carried out for wireless charging 

mode. 

If EV charging occurs after one driving, EV would be 

charged twice a day and the initial SOC of charging would 

be a high mean of 84.2%. Then we consider charging EV 

after two or four ravels, and it implies that the EV charging 

would be once a day or every other day. Meanwhile, it is 

easy to calculate the initial SOC means of the other two 

charging scenarios are 68.5% and 36.8%. In this case, the 

charging load profiles of private EV in 2020 could be 

calculated in various charging scenarios and as shown in Fig. 

(6). 
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Fig. (6). Charging load profiles of private EVs in 2015 under 

various charging scenarios 

In Fig. (6), in the scenario of every other day, the 

charging load peak is minimal and the charging duration is 

the longest due to the lowest initial SOC mean. Tab. (3) 

shows the peak loads and daily average charging powers of 

three charging scenarios. 

Tab.(3). Charging load peak load and average daily charging Power 

Charging 

scenario 

Peak load 

(GW) 

Daily average 

charging power 

(GW·h) 

Twice a day 5.52 17.2 

Once a day 4.58 18.58 

Every other day 2.94 19.0 

 

In the charging scenario of twice a day, the peak load is 

maximal and the SOC of EV battery keeps constantly at a 

high level (approximately close to 100%), which is an 

advantage to feedback more power to the grid by V2G 

system. In the other two charging scenarios, the peak load 

could reduce, however the SOC of EVs battery would be 

lower, which implies that the power feedback to the grid also 

becomes less. Therefore, while designing the V2G system, it 

is necessary to consider the peak load generated by EVs 

charging and the capacity of EV feedback to the grid. 

5. CONCLUSIONS 

Due to many uncertain factors, it is difficult to set up a 

precise mathematical model of calculating the EVs charging 

load. By analyzing the characteristics of the wireless 

charging mode, we apply Monte Carlo method to draw the 

one driving mileage of private EV, obtain the initial SOC of 

charging and charging power based on the characteristics of 

the EVs battery, estimate the initial charging time by adding 

the departure time to the travel time, and establish a more 

precise model to calculate the private EVs charging load. 

According to China's electric car development strategy and 

planning and relevant statistics, the simulation researches of 

predicting the load profiles of private EVs charging in 2015 

and 2020 have been carried out. There is obvious difference 

between peak and valley load of the private EVs charging 

load profile, and the load peaks occur at 7: 00-8: 00 and 17: 

00-19: 00, which is basically consistent with the whole 

network load peak periods. Due to dispersing the EVs 

charging locations and charging time, the peak load in the 

wireless charging mode is 443.24 MW and decreases by 



14.6% than that of 519.23 MW in the plug-in charging 

mode. Furthermore, we calculate the charging load profiles 

of the private EVs in three charging scenarios in 2020, and 

the results have a certain reference value for the design of 

V2G system in the future. 
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