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Abstract: The concept of senescence as a barrier to tumorigenesis, either by natural replicative limits or as stress-induced 

senescence deserves a critical evaluation of the benefits that can be achieved for cancer diagnosis and therapy. It is  

accepted that neoplastic cells can be forced to undergo senescence by genetic manipulations and by epigenetic factors,  

including anticancer drugs, radiation and differentiating agents. Senescent features can be imposed even in the absence of 

the two functional effector pathways, p53 and pRb, paving the way for speculation about the possible benefits of inducing 

an unspecific senescence program to stop tumor growth. In the present work we will review the potential of cellular  

senescence to be used as target for anticancer therapy. 
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CELLULAR SENESCENCE 

 Somatic cells show a spontaneous decline in growth rate 

in continuous culture [1, 2]. This is not related to elapsed 

time but to an increasing number of population doublings, 

eventually terminating in a quiescent but viable state, termed 

replicative senescence [2, 3]. These cells are commonly 

multinucleated and do not respond to mitogens or apoptotic 

stimuli [4-6]. Cells displaying characteristics of senescence 

cells can also be observed in response to other stimuli, such 

as oncogenic stress, DNA damage or cytotoxic drugs [7], 

and have been reported to be found in vivo [8]. Most tumors 

show unlimited replicative potential, leading to the hypothe-

sis that cellular senescence is a natural antitumor program. 

Cellular senescence can be induced by oncogene activation, 

such as RAS, RAF, AKT, PIM, CDC6, cyclin E, and 

STAT5, which induce oncogene-induced senescence (OIS) 

in vitro [4-6] and in vivo [8]. Recent findings suggest  

that cellular senescence is a natural mechanism to prevent 

undesired oncogenic stress in somatic cells that has been lost 

in malignant tumors.  

 Given that the ultimate goal of cancer research is to find 

the definitive cure for as many tumor types as possible,  

exploration of cellular senescence to drive towards antitumor 

therapies may decisively influence the outcome of new 

drugs. 

 Most cancers contain cell populations that have escaped 

the normal limitations on proliferative potential. This  

capability, known as immortality, contrasts with the limited  

 

 

*Address correspondence to this autor at the Instituto de Biomedicina de 

Sevilla, Hospital Universitario Virgen del Rocio, Avda. Manuel Siurot s/n. 

41013, Sevilla, Spain; Tel: +34955012819; Fax: +34955013292; 

E-mail: acarnero@ibis-sevilla.es 

replicative capacity of normal somatic cells. It has therefore 

been proposed that cellular senescence is a major tumor sup-

pressor mechanism that must be overcome during tumori-

genesis [3].  

 Two major effector pathways have been directly related 

to senescence: the p14ARF/p53/p21 pathway and the 

INK4/CDK/pRb pathway [9-14] (Fig. 1). Other genes that 

have been shown to induce a senescence-like phenotype in-

clude PPP1A [15], SAHH [16] [17], Csn2, Arase and BRF1 

[18], PGM [19], IGFBP3 and IGFBPrP1 [20], PAI-1 [21, 

22], MKK3 [23], MKK6 [23, 24], Smurf2 [25] and HIC-5 

[26]. All these genes have shown to be related to human  

tumorigenesis. However, all these genes and their pathways, 

as indicated earlier, can act in sequential steps shaping a 

well-regulated process. Over all steps, DNA methylation 

regulates expression of senescence genes, with the capability 
of controlling the process [13]. 

CLINICAL IMPLICATIONS 

 The implication of senescence as a barrier to tumorigene-

sis first comes from the realization that a limited number of 

duplications necessarily reduces the possibility of tumor 

growth. However, the proliferative lifespan before reaching 

the Hayflick limit could be sufficient to generate a tumor 

mass greater than that required for lethality. This argument 

fails to take into account the existence of ongoing cell death 

and differentiation within a tumor and the occurrence of 

clonal selection driven by different senescence-related or -

unrelated barriers. Finally, a clinically significant cancer can 

be composed of entirely mortal, pre-senescent cells if the cell 

of origin has a sufficient proliferative lifespan and the tumor 

develops with few successive clonal expansion steps and/or 

with a low cell death rate. Even with these examples, how-

ever, senescence may of course still be a significant barrier 
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to the recurrence of tumors from the small number of resid-
ual cells remaining after therapy. 

 As mentioned, several studies in vivo show that onco-
gene-induced senescence provides a bona-fide barrier to tu-
morigenesis. Michaloglou and co-workers [27] have shown 
that an oncogenic BRaf can induce senescence in fibroblasts 
and melanocytes and that human nevi display markers of 
senescence. Therefore, sustained exposure of melanocytes to 
aberrant mitotic stimuli provokes senescence after an initial 
proliferation burst. Collado and co-workers [28] identified 
senescent cells in vivo after generating new senescence bio-
markers from array studies. Using conditional Kras-val12 
mice strains they observed senescence markers to be pre-
dominant in premalignant lesions of the lung and pancreas, 
but not in those that have progressed to full-blown cancers. 
Direct evidence that hyperproliferative signals can trigger a 
program of permanent arrest in vivo have been provided in a 
transgenic model conditionally expressing E2F3 in the pitui-
tary gland [29]. E2F3 induced hyperplasias that failed to 
progress because the cells became insensitive to further mi-
togenic signals. This insensitivity correlated with the appear-
ance of senescence markers and a terminally arrested cellular 
state. Disruption of PTEN in mice also produces hyperplastic 
conditions analogous to prostatic intraepithelial neoplasia  
(a precancerous lesion in men). These lesions display senes-
cence markers [30]. Loss of p53 prevents senescence in re-
sponse to PTEN ablation and cooperates to produce invasive 
prostate carcinomas. These results are consistent with the 
notion that senescence actively limits malignant conversion. 

 In human fibroblasts in culture, the senescence program 
involves chromatin reorganization involving H3 methylation 

at the Lys9 residue concomitant with the recruitment of het-
erochromatin proteins to some proliferation-related genes. 
Braig and co-workers [31] found that disruption of Suv39h1 
methyltransferase, which methylates the Lys9 residue of H3, 
blocked ras-induced senescence and accelerated ras-induced 
lymphomagenesis in mice. Interestingly, Suv39h1-expressing 
tumors responded through senescence to chemotherapy; 
however, Suv39h1-null tumors did not show any senescent 
response but still maintained the apoptotic response. Treating 
ras transgenic mice with DNA-methyltransferase or histone 
deacetylase inhibitors, which mimic the effects of Suv39h1 
disruption, accelerated ras-induced tumorigenesis.  

 The concept of cancer being a disease whereby cells have 
lost the ability to senesce leads to a critical evaluation of the 
benefits that can be achieved for cancer diagnosis and ther-
apy through the knowledge surrounding molecular pathways 
(both genetic and epigenetic in origin) that induce senes-
cence. Until just a few years ago, it was accepted that tumor 
cells were no longer capable of senescence. Today, however, 
it is accepted that neoplastic cells can be forced to undergo 
senescence by genetic manipulations and by epigenetic fac-
tors, including anticancer drugs, radiation and differentiating 
agents [32, 33]. However, although not fully studied in vivo, 
it has been shown that senescent cells might increase the 
oncogenic potential of tumor cells. Therefore it will be nec-
essary to understand the contribution of senescent stromal 
cells to tumors, before applying drug-induced senescence 
program to tumors.  

 Immortalizing defects are recessive and can be blocked 
by imposing the process of senescence [34]. The first  
approach to inducing senescence to tumor cells was through 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of p53 and pRb senescence effector pathways crosstalk. 

Oncogenic signals Oxidative stress

Senescence

Telomere shortening

g g

DNA damage

INK4ARF

Senescence 
signals

CDKs

pRb

MDM2

p53

E2F1 Cell proliferation p21

p

SENESCENCE



48    The Open Enzyme Inhibition Journal, 2010, Volume 3 Marin et al. 

somatic cell fusion. These studies identified four senescence-
determining complementation groups. In recent years, it has 
been found that different tumoral cell lines show cellular 
growth arrest along with senescence markers after the ge-
netic expression of tumor suppressor genes commonly in-
volved in senescence, such as p53, p21, p16, pRb or p21 
[35]. Similarly, the restoration of cellular levels of p53 in a 
cell line conditionally immortalized by p53 antisense expres-
sion induces growth arrest with a senescent phenotype [36]. 
Adenovirus vectors carrying CKIs (p16INK4a, p15INK4b, 
p21cip1 and p27kip1) as vehicles for delivery and expression 
are a powerful approach to examining therapeutic applica-
tions both in vitro and in vivo, with promising results [37]. 
When a 16-amino acid transmembrane carrier segment

 
de-

rived from the Drosophila antenappedia protein was linked 
to the third ankyrin

 
repeat of the p16INK4a protein and in-

serted into cells, Rb-dependent G1
 
arrest was observed. In a 

breast-derived cell line, the chimera containing the anten-
napedia peptide and the carboxyl-terminal residue of 
p21waf1 had higher specificity for cdk4/cyclin D than for 
cdk2/cyclin

 
E and arrested the cells in G1 phase [38].  

 These observations indicate that tumor cells maintain at 
least some of the components of the cellular senescence pro-
gram, including terminal growth arrest. It is now clear that, 
depending upon the cell proliferation kinetics of the tissue of 
origin, tumor development can be initiated by genetic events, 
causing either a block in terminal differentiation or/and in-
appropriate activation of growth stimulatory signaling path-
ways. The net result in both cases is the generation of a cel-
lular clone capable of infinite expansion if it is not con-
strained by physical barriers or lack of blood supply. Lowe 
and collaborators [39] convincingly showed that in a lym-
phoid mouse tumor model, an intact senescence pathway 
appears to be pivotal to the efficacy of cyclophosphamide, 
and its disruption makes tumor cells highly refractory to the 
drug. On the other hand, as mentioned, Suv39h1-expressing 
tumors responded to chemotherapy by inducing senescence. 
However, Suv39h1-null tumors did not show any senescent 
response but still maintained the apoptotic response. 
Suv39h1-null tumors with altered apoptotic response do not 
react to therapy.  

 These results suggest that drug efficacy and tumor forma-
tion are not fully independent processes. Until recently, tu-
mor formation and the development of drug resistance were 
thought to be independent processes. Mutations in factors 
that regulate tumor-suppressive fail-safe mechanisms, such 
as apoptosis and senescence, allow transformation. Che-
motherapeutic compounds activate a separate set of effector 
pathways that eliminate malignant clones. Mutations in fac-
tors that are involved in these separate pathways inhibit the 
effect of chemotherapy to induce the effector programs to 
eliminate the tumors. Consequently, defects in antineoplastic 
fail-safe programs, even if required to allow for tumor for-
mation, do not interfere with the effector program initiated 
by therapeutic agents. Nevertheless, preclinical data have 
provided evidence that key regulators, such as p53, partici-
pate in tumor prevention and drug action, and that tumor 
mutations acquired during tumor development also confer 
chemoresistance [40]. Therefore, the “joint model” [41] pro-
poses a functional overlap between the fail-safe and thera-
peutic effector programs, such that some of the mutations 

that allowed transformation can also confer chemoresistance 
by disabling drug effector programs. 

 The in vitro observation that DNA-damaging agents not 
only promote apoptosis but also induce cellular senescence 
[8, 42] indicates that genes that control senescence might 
also determine treatment outcome. Using a MYC-driven 
mouse lymphoma model, p53 and p16INK4A were recently 
shown to control drug-induced senescence in vivo [39]. 
Drug-treated lymphomas with apoptotic defects were forced 
into senescence, and tumors that resumed growth frequently 
displayed defects in either p53 or p16INK4A. Importantly, 
drug-induced senescence was shown to contribute to long-
term host survival after cancer therapy, as mice bearing lym-
phomas that were unable to enter senescence in response to 
therapy had shorter survival times. Notably, drug-inducible 
senescence is not a phenomenon that is restricted to a mouse 
lymphoma model, as tissue specimens taken from human 
breast tumors after chemotherapy also displayed typical fea-
tures of cellular senescence [8].  

 Depending on the initiating oncogene, transformation 
relies on fail-safe defects that disrupt either apoptosis or  
senescence. There are a number of reports that drug- 
inducible senescence could become detectable only after  
apoptosis has been disabled [43]. It is conceivable that  
senescence occurs with much slower kinetics, serving as a  
'backup' fail-safe program in case the first-line response is  
corrupted. This is supported by sequential disruption of  
apoptosis- and senescence-controlling genes during tumor  
formation and subsequent therapy reported in human cancers  
[44, 45]. 

SENESCENCE BASED THERAPY 

 Different chemical agents can induce cellular senescence 
epigenetically. Treatment of primary cells with H2O2 or bu-

tyrate provokes early senescence [46]. Similar results were 

obtained after treatment with high doses of radiation and 
other damaging agents [46]. Interestingly, the treatment of 

different tumor cell lines with a variety of chemotherapeutic 

agents, radiation or differentiating agents induces irreversi-
ble growth arrest, with enzymatic and morphologic changes 

resembling those occurring during replicative senescence. 

Moderate doses of doxorubicine induced a senescent pheno-
type in 11 out of 14 tumor cell lines analyzed, independently 

of p53 status [47]. A similar effect has been observed in lines 

from human tumors treated with cisplatin [48], hydroxyurea 
[49] and bromodeoxyuridine [50]. In mammary carcinoma 

cell lines treated in vitro and in vivo with differentiating 

agents, terminal proliferative arrest with minimal toxicity for 
normal cells has been observed [51]. 

 The propensity of tumor cells to undergo senescence in 
response to different kinds of damage induced by commonly 
used chemotherapeutic treatments was compared on cell 
lines from different tumor origins [66]. Under equitoxic 
doses, the strongest induction of a senescent phenotype was 
observed with DNA-interacting agents (doxorubicin, aphidi-
colin and cisplatin) and the weakest effect was observed with 
microtubule-targeting drugs (Taxol and vincristine). A me-
dium response was observed with ionising radiation, cyta-
rabine and etoposide. Induction of senescence by the drugs 
was dose dependent and correlated with the growth arrest 
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observed in the cultures [46, 49-51]. The drug-induced  
senescent phenotype in tumor cells was not associated with 
telomere shortening and was not prevented by the expression 
of telomerase [52]. 

 Drug-induced senescent phenotypes have been confirmed 

in vivo. In several interesting works, Lowe and collaborators 

([39] and references therein) convincingly show that, in a 
lymphoid mouse tumor model, an intact senescence pathway 

appears pivotal to the efficacy of cyclophosphamide, and its 

disruption makes tumor cells highly refractory to the drug. A 
study from Poele et al. [8] revealed the correlation between 

chemotherapeutic treatment in clinical cancer and the senes-

cence response. In frozen samples from breast tumors treated 
by neoadjuvant chemotherapy (cyclophosphamide, doxoru-

bicin and 5-fluoracyl), senescent markers were detected in 

41% of samples from treated tumors. Normal tissue was 
negative, suggesting that the chemotherapy-induced senes-

cence was a specific response of tumor cells. Interestingly, 

senescence response was associated with wild type p53 and 
the increased expression of p16. Similarly, in treatment-

induced senescence, murine Em-myc lymphoma response 

required wild type p53 and p16 ([39]. 

 The Chk2 kinase is a tumor suppressor and key compo-

nent of the DNA damage checkpoint response that encom-

passes cell cycle arrest, apoptosis, and DNA repair. It has 
also been shown to have a role in replicative senescence re-

sulting from dysfunctional telomeres. Some of these func-

tions are at least partially exerted through activation of the 
p53 transcription factor. High-level expression of Chk2 in 

cells with wild type p53 led to arrested proliferation with 

senescent features [53]. These were accompanied by p21 
induction, consistent with p53 activation. However, Chk2-

dependent senescence and p21 transcriptional induction also 

occurred in p53-defective cells. Small interfering RNA-
mediated knockdown of p21 in p53-defective cells express-

ing Chk2 resulted in a decrease in senescent cells. DNA-

damage response is also induced by cytokines, such as inter-
ferons. Sustained treatment with interferon triggers a p53-

dependent senescence program. Interferon-treated cells  

accumulated gamma-H2AX foci and phosphorylated forms 
of ATM and CHK2. The DNA damage signalling pathway 

was activated by an increase in reactive oxygen species 

(ROS) induced by interferon and was inhibited by the anti-
oxidant N-acetyl cysteine. RNA interference against ATM 

inhibited p53 activity and senescence in response to beta-

interferon [54]. It seems that p53 activation is the primary 
response to DNA damage, but its absence does not preclude 

a response with a senescent phenotype. 

 Comparable to p53, which functions as a fail-safe media-

tor of DNA-damage response, the p16 inhibitor has been 

implicated in both response to DNA-damage and control of 
stress-induced senescence. Although the molecular mecha-

nism used by p16 to control not only temporary but perma-

nent cell cycle arrest is unclear, p16 responds to DNA-
damage in a delayed manner and appears to be indispensable 

for the maintenance of cellular senescence ([8, 39]. A syn-

thetic inhibitor of CDK4, possibly mimicking the role of 
p16, produced a DNA-damage-independent form of senes-

cence in cells lacking p16 expression and inhibited the 

growth of tumors in mice. Use of siRNAs to inactivate the 

papilomavirus oncoproteins E6 and E7, which deregulate 

p53 and pRb, restored cellular senescence in cervical cancer 
cells. Introduction of E2 protein, a negative regulator of E6 

and E7, induced senescence in almost all cervical carcinoma 

cells tested. The effect of E2 was not accompanied by te-
lomere shortening, nor was it prevented by telomerase ex-

pression. Induction of senescence by E2 was associated with 

p53 stabilization and strong induction of p21, and it was pre-
vented by using p21 antisense RNAs [55]. 

 Many observations indicate that p53, p21 and p16, which 
regulate cellular senescence, play an important role in treat-

ment-induced senescence of tumor cells. Since these genes 

are commonly lost in human tumors, we can expect that 
most human tumors do not respond by undergoing senes-

cence. However, this is not the case. Chemotherapeutic 

drugs induced senescence in p53- and p16-defective tumor 
cell lines [51]. In vivo, 20% of tumors undergoing senes-

cence after treatment showed p53 mutations [8]. We have 

been able to induce senescence with several chemotherapeu-
tic drugs in p53-null cells independently of p16 (Moneo and 

Carnero, unpublished). We have found that the induced se-

nescence correlated with p53-independent p21 induction. 
Moreover, knock-out of p53 or p21 in HCT116 cells de-

creased but did not abolish cellular senescence. Hence, p16, 

p53 and p21 might act as positive regulators but are not ab-
solutely required for this response. Other related tumor sup-

pressors, such as p63 or p73, could be involved, and their 

role in drug-induced senescence should be explored. 

 Treatment with 6-anilino-5,8-quinoline quinone, a previ-

ously described inhibitor of guanylate cyclase, induced cellu-

lar senescence [56]. Microarray analysis revealed that this 
compound induced the Cdk inhibitor p21WAF1 in a p53-

independent manner. Furthermore, p21, though not p53, was 

required for inhibition of proliferation by the drug. The lack 
of p53 involvement suggests that this compound acts inde-

pendently of DNA damage induction. Growth inhibition was 

also observed in malignant melanoma and breast cancer cell 
lines. Functional inactivation of the retinoblastoma tumor-

suppressor protein converted 6-anilino-5,8quinolinequinone-

induced growth arrest into apoptosis. Tumor cell senescence 
was also found to be induced by TGFb and by differentiating 

agents including retinoids. The induction of senescence has 

been analyzed in more detail with derivatives of vitamin A, 
which regulate cell growth and differentiation through their 

effects on gene expression [57]. 

 A prominent feature of immortal cells is a resistance to 

oxidative stress. By contrast, primary cells undergo senes-

cence when grown for extended periods in tissue culture or 
exposed to agents that increase production of reactive oxy-

gen species. It has been also found that enhanced glycolysis 

enables primary mouse cells to avoid senescence by protect-
ing them from oxidative damage, and that immortal ES cells 

have intrinsically high levels of glycolysis [19]. siRNA 

downregulation of PGM an enzyme regulating glycolytic 
flux, triggers senescent phenotype recovery in tumor cells. 

Therefore, regulation of glycolysis and/or ROS production 

might be interesting approaches to the induction of senes-
cence in tumors. 
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Telomerase Inhibitors 

 Restoration of the limited replicative potential in tumors 
as an anticancer therapy has been widely examined through 
the targeting of telomerase activity. Early studies indicated 
that telomerase activity is absent in somatic tissues and pre-
sent in most cancers [58]. It was therefore reasonable to sug-
gest that inhibition of telomerase activity, with a consequent 
shortening of telomeres and arrest of cell growth, might be 
an effective treatment of cancer.  

 Several different approaches to telomerase inhibition 
have been adopted to prevent the multiplication of neoplastic 
cells in culture. These have included treatment of the cells 
with the alkaloid berberine, transfection with an antisense 

vector for the human telomerase RNA component, introduc-
tion of a catalytically inactive, dominant-negative mutant of 
human telomerase reverse transcriptase and low-level ex-
pression of a mutant-template telomerase RNA. All of the 

treatments inhibit the multiplication of neoplastic cells in 
culture, and those tested also inhibit tumor formation in 
mice. It should however be noted that the transfection of 
neoplastic cells with telomerase-inhibitory vectors was ac-

complished either in culture before their inoculation into 
mice or (in the case of the antisense RNA) through daily 
injections into the growing tumors for 7–14 days. No attempt 
was made to assess the long-term systemic injection of vec-

tors into mice carrying the tumors, leaving the matter of their 
effects on normal cell function yet to be investigated. Te-
lomere shortening has been observed in the treated tumor 
cells and correlates with inhibition of their proliferation [59]. 

The expression of levels of mutant telomerase RNA template 
above threshold decreases cell viability despite the retention 
of endogenous wild-type telomerase RNA, wild-type telom-
erase activity, and unaltered stable telomere lengths.  

 One reported advantage of telomerase inhibition as a 

cancer chemotherapy was that it was not expected to induce 

cancer in normal cells, as telomerase activity is closely asso-
ciated with advanced tumors [58]. Knockout of the gene for 

the RNA component of telomerase in mice does not, how-

ever, prevent either tumor formation or neoplastic transfor-
mation of cells cultured from such mice [60, 61]. The inci-

dence of spontaneous malignancies is even higher than that 

of normal mice [61]. A similarly increased risk of cancer is 
found in individuals with the inherited syndrome dyskerato-

sis congenita (DKC) that is caused by a mutation in one  

of the components of telomerase, such that individuals  
with DKC are deficient for telomerase activity [62]. This 

increased incidence of cancer is presumably a result of end-

to-end fusion of chromosomes destabilized by inadequate 
capping [63]. There is therefore the distinct possibility that 

systemically introduced inhibition of telomerase in cancer 

chemotherapy would increase the frequency of chromosome 
aberration and the risk of secondary cancers in normal tissue, 

particularly when p53 mutations already exist [64]. 

 The situation became more complicated when it was 
found that telomerase activity is present in stem cells and 
dividing transit cells of renewing tissues, and even when  
cell division is induced in tissues conventionally regarded  
as quiescent. Thus, it seems likely that all tissues with cells 
able to divide have either ongoing or potential telomerase 

activity with a capacity for telomere maintenance during cell  
division. 

 Treatment of cancer by telomerase inhibition is still con-
sidered potentially valid for several reasons that might miti-
gate side effects on normal tissues [65]. One reason is that 
telomeres are longer in normal tissues than in most cancers, 
and treatment of tumors can be designed to end before te-
lomere depletion in normal tissues [64]. However, further 
studies with this approach must be carried out to protect re-
newing tissues, such as intestine, epidermis, and hema-
topoietic tissue, in which stem cells and transit cells are con-
stantly dividing at a high rate. 

 It is expected that telomerase inhibitors will be developed 
that have far fewer side effects than many of the cancer che-
motherapeutic agents that are currently available. Individuals 
with DKC show features that include abnormalities of the 
skin and nails and eventual failure of proliferation in the 
bone marrow, which indicates that telomerase is required  
for normal proliferative capacity in these somatic tissues. 
Despite this telomerase deficiency, onset of pancytopaenia  
in these individuals does not occur until a median age of  
10 years, which indicates that it might be relatively safe to 
administer telomerase inhibitors continuously for several 
years. 

 Telomerase inhibitors will not be useful, however, for the 
minority of tumors that use ALT to maintain their telomeres. 
In addition, in telomerase-positive tumors it can be predicted 
that effective telomerase inhibitors will exert an extremely 
strong selection pressure for the emergence of resistant cells 
that use the ALT mechanism. Activation of ALT was not 
observed in cell-culture experiments in which telomerase-
positive cell lines were treated with small-molecule inhibi-
tors of telomerase or dominant-negative TERT mutants [66], 
indicating that it is not a high-frequency event. This might be 
a problem, however, in clinically significant tumors contain-
ing as many as 10

12
 cells. Development of ALT inhibitors 

may therefore be necessary. For tumors that use both te-
lomere maintenance mechanisms, treatment might need to be 
initiated with a combination of telomerase and ALT inhibi-
tors. Both telomerase and ALT must access the telomere, but 
how this might be achieved is at present unknown. A further 
possibility could be to identify molecular targets for simulta-
neous inhibition of both telomere maintenance mechanisms 
since proteins involved in telomerase-based and ALT-
mediated events may overlap. 

CONCLUDING REMARKS 

 Neoplastic cells can be forced to undergo senescence by 
genetic manipulations and by epigenetic factors, including 
anticancer drugs, radiation and differentiating agents. There-
fore, the activation of an unspecific senescence program to 
stop tumor growth might be of value added to surgery or 
radiation. However, possible escape from a yet uncontrolled 
senescent phenotype and the unknown effect in vivo of se-
nescent stromal cells might hamper these efforts. A more 
controlled induction of senescence through the knowledge of 
pathways involved and targeting specific targets might rend 
a less profitable but more valued effort. The use of tools such 
as oncolytic viruses driven by telomerase promoters might 
also work better than direct inhibition of the protein. How-
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ever, it is too early and more research is needed in the basic 
understanding of the molecular mechanisms driving the  
senescence processes before embarking patients in such  
therapy. 
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