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Abstract: Sepsis is one of the leading causes of death in critically ill patients in the intensive care unit. Sepsis accounts 

for significant morbidity and mortality in critically ill children as well. The pathophysiology of sepsis is characterized by a 

complex systemic inflammatory response, endothelial dysfunction, and alterations in the coagulation system, which lead 

to perturbations in the delivery of oxygen and metabolic substrates to the tissues, end-organ dysfunction, and ultimately 

death. Oxidative stress plays a crucial role as both a promoter and mediator of the systemic inflammatory response, 

suggesting potential targets for the treatment of critically ill children with the sepsis syndrome. Herein, we will provide a 

brief review of the role of oxidative and nitrosative stress in the pathophysiology of sepsis. 
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INTRODUCTION 

 Sepsis is a leading cause of morbidity and mortality in 
children and accounts for nearly 4,500 deaths and close to $2 
billion per year in healthcare expenditures in the United 
States alone [1]. The pathophysiology of sepsis is characteri-
zed by a complex systemic inflammatory response, endo-
thelial dysfunction, and alterations in the coagulation system, 
which lead to perturbations in the delivery of oxygen and 
metabolic substrates to the tissues, end-organ dysfunction, 
and ultimately death. Importantly, therapy directed at 
restoring oxygen and substrate delivery to the tissues has 
been shown to improve outcome [2]. Oxidative stress plays a 
crucial role as both a promoter and mediator of the systemic 
inflammatory response, suggesting potential targets for the 
treatment of critically ill children with the sepsis syndrome 
[3-7]. Herein, we will provide a brief review of the role of 
oxidative and nitrosative stress in the pathophysiology of 
sepsis.   

THE OXYGEN PARADOX 

 Oxygen is the most abundant element in the earth’s crust, 
and cellular function is critically dependent upon oxygen, as 
evidenced by the relative complexity of the three major 
organ systems that have evolved to transport oxygen from 
the surrounding environment to the cells – namely, the 
cardiovascular, respiratory, and hematopoeitic systems. Cells 
do not have the means to store oxygen and are therefore 
dependent upon a continuous supply that closely matches the 
changing metabolic needs that are necessary for normal 
metabolism and cellular function. The terms hypoxia and  
hypoxemia are frequently (and probably incorrectly) used 
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interchangeably. A more purist approach would be to define 
hypoxia as a lower than normal partial pressure of oxygen 
(PO2) in the tissues. Hypoxemia is then defined as a lower 
than normal partial pressure of oxygen in the blood (PaO2). 
There are a few well-known types of hypoxia: (i) 
Hypoxemic hypoxia (due to lower than normal PaO2); (ii) 
Anemic hypoxia (due to decreased oxygen carrying capacity 
of the blood, due to either a low red blood cell count or the 
presence of abnormal hemoglobin); (iii) Circulatory hypoxia 
(also known as stagnant hypoxia, due to lower than normal 
cardiac output); and (iv) Histotoxic hypoxia (due to cyanide 
poisoning or “poisoning” due to sepsis – see discussion on 
cytopathic hypoxia below). Note that if the supply of oxygen 
is not aligned with the normal metabolic requirements of the 
tissues, for whatever reason, tissue hypoxia will ensue, 
eventually resulting in cellular injury and/or death. 
Ironically, oxygen is inherently toxic to these same cells that 
are so critically dependent upon a steady supply of oxygen 
for normal cellular function – the so-called oxygen paradox 
[8-11]. Exposure to hyperoxia in vivo results in direct 
damage to the lung through the increased production of free 
radicals and indirect damage from the accumulation of pro-
inflammatory mediators, frequently resulting in death within 
24-48 hours of exposure in rodent models [12, 14]. 
Physiologic studies conducted in healthy volunteers 
breathing 100% oxygen confirmed the toxic effects of 
oxygen as early as the 1940’s [15].  

 The toxicity of oxygen rests in its unique atomic 
structure. Each oxygen atom contains one unpaired electron 
in its outer orbit. Elemental oxygen is therefore considered a 
free radical (Table 1). However, oxygen exists in the 
atmosphere as O2, and hence contains two unpaired electrons 
with parallel spins. During normal cellular respiration, 
oxygen is reduced to H2O through the sequential addition of 
4 electrons at the inner membrane of the mitochondria, 
thereby generating the necessary chemical energy to generate 
36 molecules of adenosine triphosphate (ATP). Nearly 98% 
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of oxygen is converted to water in this manner. The 
remaining 2% of oxygen undergoes partial and incomplete 
reduction due to the leakage of electrons across the 
respiratory chain, resulting in the formation of intermediate 
reactive oxygen species (ROS) – namely, superoxide (O2

·-), 
hydrogen peroxide (H2O2), and the hydroxyl radical (OH·).  

GENERATION OF REACTIVE OXYGEN SPECIES 
(ROS) 

 Under normal physiologic conditions, the principal 
source of ROS is the incomplete reduction of O2 as a normal 
byproduct of aerobic respiration. One or two electron 
reduction of oxygen forms two ROS, superoxide anion (O2

·-) 
and hydrogen peroxide (H2O2), respectively, which can then 
be converted into more reactive species, such as the hydroxyl 
radical. The superoxide anion is formed after the addition of 
one electron to oxygen and is generally the least reactive 
ROS. It is rapidly inactivated by the anti-oxidant enzyme, 
superoxide dismutase (SOD), which reduces it to hydrogen 
peroxide (Eq. 1).  

2 O2
· - + 2 H+  H2O2 + O2         (1) 

 Hydrogen peroxide is much less reactive and is converted 
enzymatically to water by catalase (Eq. 2) and glutathione 
peroxidase (which requires glutathione, GSH and produces 
glutathione disulfide, GSSG and water) (Eq. 3).  

2 H2O2  O2 + H2O          (2) 

H2O2 + 2 GSH  GSSG + 2 H2O         (3) 

 In the presence of transition metals (e.g. copper, iron), 
the Haber-Weiss reaction generates the highly reactive 
hydroxyl radical (OH·) and the hydroxyl anion (OH-) from 
hydrogen peroxide and the superoxide anion. The first step 

of this reaction involves reduction of the transition metal 
(reduction of ferric iron to ferrous iron is shown) (Eq. 4). 
The second step of this reaction is known as the Fenton 
reaction (Eq. 5). 

Fe3+ + O2
· -  Fe2+ + O2         (4) 

Fe2+ + H2O2  Fe3+ + OH· + OH-       (5)  

 The net reaction is shown in Eq. 6. 

O2
· - + H2O2  OH· + OH- + O2        (6) 

 The hydroxyl radical in turn causes damage to proteins, 
lipids, and nucleic acids. Hydroxyl radicals oxidizes amino 
acids such as lysine, serine, arginine, and proline to 
inactivate cellular proteins. Hydroxyl radical removes 
hydrogen from membrane lipids, generating a lipid radical 
that can then react with oxygen to generate a peroxy radical. 
The peroxy radical in turn removes another hydrogen from 
the next membrane lipid to initiate a chain reaction known as 
lipid peroxidation. Finally, hydroxyl radical causes base 
modification, strand breaks, and cross-linking in nucleic 
acids. 

 Other major sources of ROS under normal conditions 
include the respiratory burst during phagocytosis (largely 
due to the effects of a multi-component enzyme complex, 
NADPH oxidase) (Eq. 7) and arachidonic acid metabolism 
[16].  

NADPH + H+ + 2 O2  NADP+ + 2H+ + 2 O2
·-      (7) 

 The NADPH required for this reaction is generated 
through the hexose monophosphate shunt (HMP shunt) – an 
alternative biochemical pathway starting from glucose-6-
phosphate which primarily generates NADPH for reductive 
synthesis and ribose sugars for nucleic acid synthesis. The 

Table 1. Definition of Terms 

Free radicals 

Any atom or molecule containing one or more unpaired electrons in the outermost orbit or electron shell. By convention, the unpaired electron is represented 

as a bold superscripted dot (e.g. O2
·-). 

Redox 

Any chemical reaction in which an atom has its oxidation state changed (short-hand notation for reduction-oxidation reaction) 

Oxidation state 

A measure of the degree of oxidation of an atom in any substance, defined as the charge an atom might be expected to have if all bonds to atoms of different 

elements were 100% ionic  

Example: Ferrous iron (Fe-II) has an oxidation state of +2, while ferric iron (Fe-III) has an oxidation state of +3 

Oxidation 

The loss of electrons in a chemical reaction (i.e. an increase in the oxidation state) 

Reduction 

The gain of electrons in a chemical reaction (i.e. a decrease in the oxidation state) 

Reducing agent 

The atom or molecule in a redox reaction that reduces another species (and in so doing, becomes oxidized); the electron donor in a redox reaction 

Oxidizing agent 

The atom or molecule in a redox reaction that oxidizes another species (and in so doing, becomes reduced); the electron acceptor in a redox reaction 

Reactive oxygen species 

Molecules or atoms formed by the reduction of oxygen 

Oxidative stress 

An imbalance or disequilibrium between pro-oxidant and anti-oxidant activity 
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respiratory burst is a major source of ROS, especially during 
stress (e.g. sepsis, shock, and ischemia-reperfusion injury).  

 Other enzyme systems also generate significant ROS 
species. For example, the xanthine oxidoreductase (XOR) 
enzyme system is a key enzyme in purine catabolism and 
catalyzes the oxidation of xanthine and hypoxanthine to uric 
acid. XOR is primarily localized to the vascular endothelium 
and smooth muscle cells and exists in two interconvertible 
forms - xanthine dehydrogenase (XDH) and xanthine 
oxidase (XO). XDH is irreversibly converted to XOR via 
proteolysis or reversibly by oxidation of cysteine residues to 
form disulfide bridges. XDH uses NAD+ as the electron 
acceptor, while XO uses O2 as the electron acceptor 
(generating superoxide anion in the process) (Fig. 1). During 
tissue ischemia, XDH is converted to the oxidase form by a 
protease activated by increased calcium flux. At the same 
time, ATP is degraded to hypoxanthine, which accumulates 
in the ischemic tissue. During reperfusion, with the presence 
of large quantities of molecular oxygen and high 
concentrations of hypoxanthine, XO generates a burst of 
superoxide. Recently, the XOR enzyme system has been 
shown to catalyze the reduction of nitrates and nitrites to 
nitrites and NO·, respectively, thus also contributing to NO· 
generation during ischemia-reperfusion injury [17, 18]. 

ANTI-OXIDANT DEFENSE MECHANISMS 

 The evolution of highly efficient mechanisms of energy 
production via aerobic respiration coincided in parallel with 
the evolution of a complex network of anti-oxidant defense 
mechanisms necessary to combat the generation of ROS as a 
byproduct of this same energy-producing process. Generally, 
under normal physiologic conditions, the balance between 
ROS production and elimination is maintained by the 
components of anti-oxidant defense. Some of the most 
important components of this anti-oxidant defense include 
the anti-oxidant enzymes discussed above that rapidly 
eliminate toxic ROS intermediates generated during normal 
metabolism. These enzymes include superoxide dismutase 

(SOD), catalase, and glutathione peroxidase. Three major 
forms of SOD are recognized – copper-zinc SOD (Cu, Zn-
SOD), largely confined to the cytosol; manganese SOD (Mn-
SOD), largely confined to the mitochondria; and 
extracellular SOD, largely confined to the extracellular 
matrix. As mentioned above, SOD generates hydrogen 
peroxide, which is subsequently converted to water by the 
enzymes, catalase and glutathione peroxidase. Additional 
enzymes important for anti-oxidant defense include the 
thioredoxin system (Fig. 2), which reduces oxidized cysteine 
groups on proteins and scavenges H2O2, glutathione 
reductase (Eq. 8), glutathione-S-transferase (important in 
detoxification and drug metabolism), and heme oxygenase 
(Eq. 9). 

GSSG + NADPH + H+  2 GSH + NADP+       (8) 

Heme + O2  Biliverdin + Fe2+ + CO       (9) 

 Heme oxygenase (HO) exists as an inducible isoform 
(HO-1), as well as two constitutive isoforms (HO-2 and -3). 
A broad spectrum of cell stressors, including LPS, phorbol 
esters, sodium arsenite, hydrogen peroxide, ultraviolet 
radiation, hyperoxia, heavy metals, and heat shock can 
induce HO-1 expression, which has led to its classification as 
a heat shock protein (Hsp32) [19]. Heme oxygenase 
generates biliverdin, which is converted to bilirubin (itself, a 
potent endogenous anti-oxidant) via biliverdin reductase. 
Carbon monoxide (CO) has recently gained interest as 
unique cell signaling molecule with anti-inflammatory and 
anti-apoptotic effects [20]. 

 Superoxide and hydrogen peroxide are converted to the 
highly reactive hydroxyl radical in the presence of transition 
metals (e.g., iron, copper) via the Haber-Weiss and Fenton 
reactions. Several plasma proteins, including transferrin, 
ferritin, lactoferrin, and ceruloplasmin bind these transition 
metals and prevent this reaction. Haptoglobin binds free 
hemoglobin (which is pro-oxidant by virtue of the fact that it 
may be degraded to free iron and has been shown to directly 
stimulate lipid peroxidation). Albumin, one of the most 

 

Fig. (1). Purine catabolism by the xanthine oxidoreductase (XOR) enzyme system. 
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abundant proteins in plasma, is an effective scavenger of free 
radicals. Finally, small molecules such as bilirubin 
(generated by heme oxygenase, above), uric acid, ubiquinone 
(coenzyme Q), metallothionein, and glutathione also 
contribute to the plasma anti-oxidant pool. 

 Several micronutrients are effective anti-oxidants. As 
alluded to above, polyunsaturated lipids in the cell 
membrane are particularly vulnerable to oxidative stress via 
lipid peroxidation. Vitamin E ( -tocopherol) is a lipid-
soluble anti-oxidant that can interrupt the chain reaction that 
leads to lipid peroxidation to form the stable -tocopheryl 
radical, which is recycled by either vitamin C (ascorbic acid) 
or by ubiquinone (coenzyme Q). -carotene and other 
carotenoids (e.g. lycopene) are important dietary anti-
oxidants. -carotene is a precursor for vitamin A, another 
important anti-oxidant. Both vitamin A and C are cofactors 
for several enzymes and appear to directly scavenge free 
radicals. Finally, several minerals are important co-factors 
for the anti-oxidant enzymes discussed above, including 
selenium (glutathione peroxidase), copper (SOD, catalase), 
zinc (SOD), and manganese (SOD).   

GENERATION OF REACTIVE NITROGEN SPECIES 
(RNS) 

 Reactive species can be nitrogen-centered as well. The 
primary source of reactive nitrogen species (RNS) in most 
biological systems is the free radical, nitric oxide (NO·). NO· 
plays a critical role in a number of normal physiologic 
processes, including neurotransmission, regulation of 
vascular tone, and host defense. NO· in mammalian tissues is 

synthesized by three distinct isoforms of the enzyme, nitric 
oxide synthase (NOS), which catalyzes the conversion of L-
arginine to L-citrulline and NO·. A fourth isoform, 
mitochondrial NOS (mtNOS) has also been described [21-
23]. NOS1 (also known as neuronal NOS, nNOS) and NOS3 
(also known as endothelial NOS, eNOS) are constitutively 
expressed and are activated by reversible binding of 
Ca2+/calmodulin following elevations in intracellular Ca2+. 
NOS1 is found primarily in the kidney, muscle, myocar-
dium, and pancreas and plays an important role as a 
neurotransmitter. NOS3 is largely confined to the vascular 
endothelium and plays a major role in the regional regulation 

of vascular tone and blood flow. Consistent with their role in 
cell signaling and regulation of vascular tone, the 
constitutive isoforms produce NO· in nanomolar concentra-
tions for a very short half-life.  

 In contrast, NOS2 (also known as inducible NOS, iNOS) 
is expressed in vascular smooth muscle, immune cells, 
erythrocytes, kidney, pancreas, liver and lung and produces 
longer lasting NO· in micromolar concentrations. NOS2 gene 
expression is highly inducible in response to a variety of pro-
inflammatory stimuli, including lipopolysaccharide (LPS), 
tumor necrosis factor (TNF)- , and interleukin (IL)-1 . 
Excessive NO· production by NOS2 is thought to play a 
major role in the pathophysiology of septic shock [24]. The 
source of this excessive NO· production appears to be 
parenchymal cells, and not leukocytes as previously believed 
[25, 26]. While several pre-clinical studies of NO· inhibition 
have shown promise [27], a recent phase III multi-center, 
randomized, placebo-controlled trial of the NOS inhibitor 
546C88 in critically ill patients with septic shock was 
stopped prematurely due to an increase in mortality in 
patients who were randomized to the treatment group [28]. 
As expected, there was a significant increase in blood 
pressure, a significant decrease in vasopressor requirements, 
and a significant increase in resolution of shock in the 
patients randomized to the treatment group. Therefore, it 
appears that NO·

 has dual effects – both protective and 
deleterious – in patients with septic shock [24]. 

 As alluded to earlier, NO·
 has a relatively short half-life 

and rapidly degrades to nitrite (NO2
-) and nitrate (NO3

-) in 
vivo. For this reason, NO· is difficult to measure and hence 
NO2

- and NO3
- (often abbreviated as NOx) are used as 

surrogates of NO· production in most clinical studies [29-
33]. Recent studies suggest, however, that nitrite, in 
particular, may serve as an important storage pool for NO. 
Nitrite is reduced back to NO· (in part, by XOR) under 
conditions of hypoxia or acidosis, causing local vasodilation 
to increase local tissue oxygen delivery [34]. 

 The reaction of NO· with the superoxide anion (O2
-) is 

perhaps more relevant to the present discussion, as 
peroxynitrite (ONOO-) is a highly reactive RNS which 
directly damages cellular proteins, membrane lipids, and 
nucleic acids (Eq. 10) [35, 36]. 

NO· + O2
-  ONOO-       (10) 

 Most of the adverse effects of RNS appear to be 
mediated by the peroxynitrite radical and are discussed 
further below. 

OXIDATIVE AND NITROSATIVE STRESS IN SEPSIS  

 Oxidative stress is results from an imbalance between 
ROS/RNS generation and the body’s anti-oxidant defenses, 

 

Fig. (2). Regulation of Redox Status in the Cell by the Thioredoxin (TRX) System. 
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due to (i) increased generation of ROS/RNS; (ii) decreased 
synthesis or consumption of the body’s natural antioxidants; 
or (iii) a combination of both processes. Oxidative stress is 
quantified in vivo via a number of methods (Table 2) [37-
39]. Alternatively, levels of anti-oxidants (e.g., -tocopherol, 

-carotene, selenium, ascorbic acid) or the activities of 
relevant anti-oxidant enzymes (e.g. superoxide dismutase, 
catalase, glutathione) may be measured. Unfortunately, very 
few studies have measured biomarkers of oxidative stress in 
critically ill children with sepsis (Table 3) [40]. However, 
absence of evidence does not necessarily mean absence of 
effect! The multitude of pre-clinical studies and studies in 
critically ill adults strongly implicate oxidative stress in the 
pathophysiology of sepsis [4].  

 Importantly, both ROS and RNS contribute to the host 
inflammatory response either via direct cellular toxicity or 
through the activation of pro-inflammatory gene expression 
pathways (Fig. 3). ROS and RNS have direct effects (via 
oxidation or nitration reactions, respectively) on the structure 
and function of many enzymes, proteins, lipids, and DNA. 
These effects disrupt the function of the machinery of the 
cell – proteins! Critical enzymes, transcription factors, and 
scaffolding proteins are rendered non-functional through 
these modifications. As discussed previously, lipid peroxida-

tion results in disruption of the cell membrane as well as the 
membranes of cellular organelles, and causes the release of 
highly cytotoxic products, including malondialdehyde. The 
release of these contents, which may include endogenous 
danger signals such as heat shock proteins or HMGB-1 may 
further activate the inflammatory response in surrounding 
cells [41, 42].  

 ROS interaction with nucleic acids results in the 
production of markers of oxidative stress, such as 8-
hydroxydeoxyguanosine and 8-nitroguanine. In addition, 
ROS induces single strand breaks in the DNA, which 
subsequently activates a putative nuclear repair enzyme, 
known as poly (ADP-ribose) polymerase-1 (PARP-1). 
PARP-1 (also called PARS, poly (ADP-ribose) synthetase) is 
a nuclear enzyme activated by single strand breaks and nicks 
in DNA and can therefore be induced by a diverse range of 
environmental stimuli, including ROS and RNS. PARP-1 is 
composed of three functional domains – an N-terminal DNA 
binding domain that binds to single strand DNA breaks, a 
central automodification domain, and a C-terminal catalytic 
domain. Once activated, PARP-1 binds to the break in DNA, 
activating the C-terminal catalytic domain which then 
cleaves NAD+ into nicotinamide and ADP-ribose. PARP-1 
then covalently attaches ADP-ribose groups to other proteins 

Table 2. Relevant Biomarkers of Oxidative Stress 

Serum or Plasma Urine Exhaled Breath Condensate 

Glutathione (GSH/GSSG) F2-isoprostanes Hydrogen peroxide 

F2-isoprostanes TBARS* 8-isoprostane 

Protein carbonyls 8-Oxo-7,8-dihydro-2deoxyguanosine TBARS* 

Malondialdehyde (MDA)   

Lipid peroxides   

*Thiobarbituric acid-reacting substances. 

Table 3. Oxidative Stress in Critically ill Children with Sepsis 

Study Population Biomarker Result 

Seema et al. [56] Neonatal sepsis 

(n=30) 

SOD, GPx*  vs. healthy controls  

No  sepsis vs. septic shock  

Batra et al.. [57] Neonatal sepsis 

(n=30) 

MDA, UA, Alb, XO, 

SOD, GPx* 

 MDA, XO, SOD, GPx 

 UA, Alb vs. healthy controls 

Nemeth et al. [58] Pediatric sepsis 

(n=34) 

XO#, GSSG/GSH*  XO,  GSSG/GSH vs. healthy controls 

Kapoor et al. [59] Neonatal sepsis 

(n=44) 

MDA, UA, Alb, SOD, 

Cat, GPx* 

 MDA, SOD, GPx, Cat 

UA, Alb vs. healthy controls 

Cherian et al. [60] Pediatric sepsis 

(n=38) 

GSH, SOD, TBARS, vit 

C* 

 vit C 

No  GSH, SOD, TBARS vs. healthy controls 
 
Note: SOD (superoxide dismutase), GPx (Glutathione peroxidase), MDA (malondialdehyde), UA (uric acid), Alb (albumin), XO (xanthine oxidase), GSSG/GSH (ratio between 
oxidized and reduced glutathione ), Cat (catalase), TBARS (thiobarbituric acid-reacting substances), vit C (Vitamin C) 
* Samples obtained from serum or plasma 
# Samples obtained from urine. 



Oxidative Stress in Critically Ill Children with Sepsis The Open Inflammation Journal, 2011, Volume 4    79 

(including the automodification domain on PARP-1 itself), 
culminating in the extension of a nucleic acid-like polymer, 
poly (ADP)-ribose. Unfortunately, PARP-1 also initiates an 
energy consuming cycle, which rapidly depletes the 
intracellular NAD+ and ATP pools, slowing the rate of 
cellular respiration to the point where the cell more or less 
commits suicide [43]. This cell suicide phenomenon has 
been suggested to form the basis for a condition known as 
cytopathic hypoxia that characterizes sepsis and multiple 
organ dysfunction syndrome (MODS) [44]. 

 ROS and RNS species also appear to cause indirect tissue 
damage via activation of pro-inflammatory transcription 
pathways that regulate pro-inflammatory gene expression. 
These reactive species appear to cause changes in critical 
thiol groups or aminoacid residues of mitogen-activated 
protein kinases and their regulatory phosphatases, which are 
important components of an extensive network of 
interconnected signal transduction pathways. Mitogen-
activated protein kinases mediate the transduction of 
extracellular signals from the receptor levels to the nuclear 
transcription factors, such as AP-1 and NF- B. These 
kinases activate each other by sequential steps of 
phosphorylation; whereas their inactivation is mediated by 
phosphatases through dephosphorylation. NF- B appears to 
be a master switch, or control point, for the expression of a 
large number of proinflammatory genes (Table 4). 

 NF- B and AP-1 appear to be regulated by the redox 
status inside the cell. Interestingly, intracellular redox status 
appears to have opposing roles on these two pluripotent 
transcription factors. In general, pro-oxidant factors activate 
NF- B and attenuate AP-1, while anti-oxidant factors 
activate AP-1 and attenuate NF- B [45]. A large body of 
indirect and direct evidence links the NF- B pathway to the 

dysregulated inflammation that is characteristic of septic 
shock [46-49]. Based upon these studies, the NF- B pathway 
would appear to be a logical therapeutic target for the 
treatment of critically ill patients with septic shock, perhaps 
through modification of redox status [48].   

Table 4. Genes Regulated by the Transcription Factor,  

NF- B 

Cytokines and Chemokines 

 Tumor necrosis factor-  

 Interleukins-1, -2, -3, -6, -8, and –12 

 RANTES 

 Eotaxin 

 Gro- , - , and -  

 Macrophage inhibitory protein 1alpha (MIP-1 ) 

 Macrophage chemotactic protein 1 (MCP-1) 

Cell Adhesion Molecules 

 Intracellular adhesion molecule 1 (ICAM-1) 

 Vascular cell adhesion molecule 1 (VCAM-1) 

 E-selectin 

Growth Factors 

 Granulocyte-macrophage colony-stimulating factor (GM-CSF) 

 Granulocyte colony-stimulating factor (G-CSF) 

 Macrophage colony-stimulating factor (M-CSF) 

Miscellaneous 

 Inducible Nitric oxide synthase 

 C reactive protein (CRP) 

 5-lipoxygenase 

Inducible cyclo-oxygenase 2 

 

Fig. (3). The toxic effects of ROS/RNS. 
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NOVEL THERAPEUTIC AGENTS DIRECTED 
AGAINST OXIDATIVE STRESS – A RATIONAL AP-

PROACH? 

 Several novel therapeutic agents directed towards the 
oxidative stress response have shown promising results in 
pre-clinical models of sepsis. Unfortunately, there have been 
relatively few successes in the clinical setting [4, 39, 50, 51] 
and the experience with these agents in the pediatric 
population is quite limited [52]. This particular problem is 
not new. Promising therapies in pre-clinical models of sepsis 
have universally failed to live up to initial expectations in 
subsequent clinical trials [53]. In fact, to date, there have 
been only two positive clinical trials in critically ill adults 
with sepsis – early goal-directed therapy (EGDT) [2] and 
activated protein C (drotrecogin alfa, Xigris®, Eli Lilly and 
Co, Indianapolis, IN) [54]. Regardless, this kind of 
management approach seems both reasonable and feasible 
[55], though further studies, particularly in critically ill 
children, are required.   
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