
 The Open Information Systems Journal, 2008, 2, 1-10 1

 1874-1339/08 2008 Bentham Science Publishers Ltd.

The Design and Implementation of Transparent Application-Layer
Filtering Platform

Yi-Shing Lee and Wei-Ru Lai*

Department of Electrical Engineering, Yuan Ze University, R.O.C., Taiwan

Abstract: For a long time, firewalls have played an important role in network security, protecting many of us against the

attacks of malicious users. The implementation of firewalls can be classified into two categories: packet-filtering and

proxy-based. Packet-filtering firewalls have gained enormous popularity because of the high performance and easy de-

ployment features. However new generation of network attacks (worms, viruses etc.) have penetrated the protection of the

traditional packet-filtering firewalls. Application-layer firewalls (traditionally called proxy servers) are given increasing

attention recently. The two weaknesses, poor performance and complicated deployment procedures, have hindered the

spread of application-layer firewalls. Powerful hardware can be adopted, like ASIC, to greatly improve the performance

but complicated deployment roots in the congenital inability of many network protocols. To solve the deployment diffi-

culty, the paper first discusses the concept of transparent deployment and implements a protocol-independent platform for

illustration. On this implemented platform, firewall programmers simply focus on the development of application-specific

filters while rest of the remaining hard task is taken care of by the platform.

Keywords: Packet-filtering firewall, proxy-based firewall, application-layer firewall, transparent deployment, application-layer
protection, filtering platform.

1. INTRODUCTION

 Global enterprises rely heavily on the Internet for busi-
ness communication and information exchange. To balance
the requirements of communications and the business pri-
vacy, firewalls are deployed between Internet and the corpo-
rate networks. Firewalls [1] protect the corporate networks
from viruses, network attacks, or even malicious software.
For example, the malicious programs corrupt important files,
cause malfunctioned operation of business servers, and even
take advantages of these servers to attack other public serv-
ers on the Internet. Firewalls are most oftenly adopted to
block many known vicious attacks, notify system administra-
tors of the latest alerts, and generate effective reports for
analysis.

 However, as more attacks occur on application layer,
such as the design flaws of application protocols or the vul-
nerability of application software (malicious ActiveX and
Java Applet code), traditional packet-filtering based firewalls
are unable to detect viruses, worms, junk emails (SPAMs)
and other application-layer attacks. The main reason is that
packet-based firewalls perform inspection solely on a single
packet. The capacity of a single packet (payload) is pretty
limited. If malicious code is transmitted over multiple pack-
ets, for best accuracy, firewalls need to assemble the payload
of multiple related packets, restore the original data stream
and then perform inspection on the restored data stream. The
payload assembly and inspection (Deep Packet Inspection)
technique is commonly used in many commercial IDS/IDP
(Intrusion Detection/Intrusion Detection and Prevention)
products. The inspection task is even more challenging when

*Address correspondence to this author at the Department of Electrical

Engineering, Yuan Ze University, Tao-Yuan 320, R.O.C., Taiwan; Tel: 886-

3-4638800, Ext. 2431; Fax: 886-3-4639355;

E-mail: wrlai@saturn.yzu.edu.tw

many application protocols on the Internet rely on more than
a single socket connection (e.g. multiple communication
channels are created), such as FTP, instant messaging (IM)
applications, multi-media streaming, popular peer-to-peer
(P2P) protocols and even VoIP communications. In many
cases, the application data is not transmitted in the original
binary format (e.g MIME). Merely inspecting the payload of
multiple related packets is not enough. That is the reason
many commercial products with DPI technology have al-
ready reached the bottlenecks and result in the inaccuracy on
the detection of many network attacks.

 Technically, only a proxy is able to fully comprehend the
operation logic (protocol) of an application. Since a proxy
understands the format of the transmitted application data,
for the best inspection accuracy on viruses, worms, mali-
cious code and application-layer attacks, many commercial
security gateway products have already integrated limited
proxy-based filters on their platforms. These proxy-based
security gateway products integrate many well-known tech-
nologies formerly adopted in packet-filtering firewalls, prox-
ies and IDS/IPS.

 As soon as connections are created, proxy-based fire-
walls [2] begin the inspection task on the transmitted data.
Since a proxy fully comprehends the format of application
data, the proxy-based filters have no difficultly in filtering
application-layer attacks. Besides, quite a lot of information
can be logged for later analysis, such as the URLs of HTTP
requests, the sender (or recipients, attachments) of emails via
SMTP and POP3, the complete conversation dialogue of
MSN connections. The application-layer records are an es-
sential part of business security information management.
Therefore the demand for application-layer inspection de-
vices is unbelievably huge on the market. For market seg-
mentation or differentiation, firewall venders have created
many marketing terms, such as application-layer firewall,

2 The Open Information Systems Journal, 2008, Volume 2 Lee and Lai

application-layer gateway (ALG), unified threat management
(UTM) and unified security management (USM) [3] etc.

 Application-layer firewalls [4], just like traditional proxy
servers, possess two obvious weaknesses, poor performance
and complicated deployment procedures. The two weak-
nesses have hindered the spread of application-layer fire-
walls. Since proxy-based firewalls have to create a bi-
directional communication channel, inspect the application
data and log essential information, all these additional fea-
tures and processing overheads result in the poor perform-
ance compared to traditional packet-filtering firewall. As the
hardware development greatly improves over the years and
more acceleration techniques are developed, such as ASIC,
network processor and multi-core processor, the performance
issue is easily solved. As for the second issue, complex de-
ployment procedures, resubetting and configuration on client
software settings are the two major tasks for network admin-
istrators. It requires tremendous efforts to deploy a proxy-
based firewall in a large network with hundreds to thousands
of users. For example, re-subnetting or configuring static
routes on relevant neighboring devices are often unavoid-
able. In general cases, proxy deployment requires the support
of client application software, such as SOCKS settings in
many client software programs. For example, users must
configure the proxy or SOCKS settings in their favorite
browsers (e.g. Internet Explorer, Firefox) when an HTTP
proxy server is deployed. It is even a nightmare if no auto-
mated tools or procedures are available and network admin-
istrators need to personally configure the settings of client
software for each and every user.

 A proxy is positioned between a client and a server. The
proxy sends a request to the server on behalf of the client
therefore the server is not aware of the existence of the real
client since all the requests come from the proxy. In some
cases, that generates a security issue because the end-to-end
“transparency” is compromised after the proxy is deployed.
Network administrators often demand the transparent archi-
tecture of a firewall. The so-called “transparency” or “trans-
parent architecture” [5] usually refers to the invisibility of a
firewall device in the deployment stage. If a device (or a
system) reduces the traditional complexity level of deploy-
ment task, the device is considered to satisfy some kinds of
transparent requirements. For example, no more configura-
tion task must be done on client software. Both sides of the
communication should not be aware of the existence of the
intermediate proxy. The transparent deployment also must
not generate any security vulnerability. For example, once a
proxy is deployed, the server loses the track of the real
sources of the requests since all the connections are initiated
by the proxy.

 To our knowledge, there is no commercial product to
solve the problem. Also, we have not found any research
literature discussing on possible solutions. Therefore, this
paper carefully studies the limitations of current transparent
application-layer firewalls and proposes an intuitive solution.
The idea is then realized on Linux platform as proof-of-
concept. Besides ease-of-installation, the modified network
platform provides a new set of system calls, based on the
traditional BSD socket API [6], for firewall developers, so
that developers can focus their efforts on the programming
of proxy-based filters without worrying about other underly-

ing transparent deployment issues. The network platform is
deployed transparently, 1) No IP subnetting or configuration
on neighboring network devices are required. 2) No configu-
ration on the client software is required. 3) Both client and
server are not aware of the existence of the intermediate ap-
plication-layer filtering device. Besides that, software filters
for any TCP application protocols are possible on this pro-
posed network platform. Firewall developers simply devote
the efforts on the programming of application-specific filters,
such as HTTP filters for URL filtering, SMTP filters for
anti-virus and anti-spam. The rest of the hassles are solved
by the proposed network platform. The proposed network
platform therefore offers complete transparency compared to
current transparent techniques being used on the market.

 The remainder of this paper is organized as follows. Sec-
tion 2 describes related researches of firewalls. Section 3
details the architecture of a proxy-based firewall. Next, it
presents the problems on current proxy-based firewall de-
ployment. Section 4 provides solutions to the transparent
deployment of proxy-based firewalls and demonstrates the
implemented platform. Section 5 concludes this paper.

2. RELATED RESEARCHES

 This section describes the related researches on firewalls.
Firewall is the network device to separate two or more net-
works and provide security issues. It is often categorized as
software-based system and hardware-based appliance.
Whether it is a software firewall or hardware appliance, the
physical location of firewalls is in-between internal (or
trusted) networks, such as corporate networks, and external
networks, such as the Internet. Legitimate users can access
the public servers while invalid access attempts as well as
malicious attacks are prevented.

 The firewall categorization includes transitional packet-
filtering firewalls, Stateful Packet Inspection (SPI) firewalls,
proxy gateways, Intrusion Detection System/Intrusion Pre-
vention (IDS/IDP) systems, ASIC-based firewalls and appli-
cation-awareness L7 firewalls (Anti-Virus, Anti-Spam,
URL-Filtering Gateway). Among them, packet-filtering
firewalls, SPI firewalls and IDS/IDP systems are based on
the technologies of packet-filtering, and are often called ge-
neric packet-filtering firewall. Others are categorized as
proxy-based firewall [7, 8, 9:837-843, 10:46-50, 11:15-17,
12, 13].

 Two common techniques are commonly adopted by
packet-filtering firewall, signature-based and flow-based
anomaly. Signature-based refers to the inspection on the
packet payload against known signatures or patterns, such as
Sasser, Code-Red or HTTP buffer overflow attacks. Flow-
based anomaly refers to that normal behavior of network
activities is first gathered and any abnormal activities are
considered attacks. Many commercial firewall products con-
tain a signature set of 2,000~6,000 patterns and the signature
set is updated daily. To increase the accuracy, some products
assemble on the payload of multiple packets to form a stream
of data for inspection.

 Packet-filtering firewalls do not provide intelligent appli-
cation filtering. For example, an IPS device is able to deter-
mine if a certain string is contained in a packet. The string
may be a signature of a malicious worm. If the worm dy-
namically modifies the signature or the signature is randomly

The Design and Implementation of Transparent Application-Layer Filtering Platform The Open Information Systems Journal, 2008, Volume 2 3

separated in multiple packets, the IPS device most often fails
in detection. Since a limited number of packets are assem-
bled for maximum system performance, if the application
data is compressed or decoded in other binary formats, sig-
nature-based filtering would also fail. Human judgments are
often heavily required because an IPS device is likely to
generate many false alarms. For example, a packet carrying
worms definitely contains a certain string but if a packet con-
taining the certain string is not necessarily a worm packet.

 Different from packet-filtering (or SPI) firewalls, proxy-
based firewalls do not perform inspection on a per packet
basis. Proxy-based firewalls do not simply forward IP pack-
ets to the final destination, but forward the request to a server
on behalf of a client. Therefore in proxy architecture, no di-
rect communication is possible between a client and a server.
A proxy intercepts a client’s connection, extracts the re-
quests, asks the server for resource, and then sends the re-
sponse of the server back to the client.

 Since a proxy-based firewall forwards the application
request to a server, two separate communication channels are
maintained for every application request. The first channel
originates the client to the proxy itself, while the other chan-
nel is created from the proxy itself to the server. A proxy-
based firewall, besides source/destination IP address and port
numbers, acquires lots of other essential information, which
makes possible enforcing tighter security policy. For exam-
ple, an HTTP-filtering firewall can determine “who” has the
access privileges instead of the source IP address of a client
host, “which” website the user is allowed to access instead of
the destination IP address of a web server. Proxy-based fire-
walls operate on the highest layer of OSI model (Application
Layer). In terms of security policy enforcement, proxy-based
firewalls offer the highest level of security control. For ex-
ample, content filtering is available on proxy-based fire-
walls, such as virus email, spam, malicious programs, por-
nography pictures and websites. User-based authentication
and authorization are also supported on proxy-based fire-
walls.

 Three drawbacks are brought by proxy-based firewalls.
First, commercial proxy-based firewalls support content-
filtering on limited application protocols (e.g. HTTP, SMTP,
POP3, IMAP, FTP) and some popular instant messaging
applications. Since only specific kinds of applications are
supported, proxy-based firewalls are sometimes called appli-
cation-specific firewalls or application-layer firewalls. For
any new application, a proxy program or application filter
must be customized. Second, an application filter on proxy-
based firewalls is in fact both a client and a server, and com-
plex content-filtering tasks require high computation power

and memory capacity, poor performance is an issue. Third,
proxy-based architecture requires the support of client soft-
ware during the deployment stage. The configuration task on
client software of every user is inevitable. The problem is
worse if the number of users is up to hundreds or even thou-
sands and it is even worse if the client software does not
support SOCKS or proxy setting.

 Table 1 shows a simple comparison of packet-filtering
and proxy-based firewalls. To provide 100% protection from
any malicious attacks, especially attacks on application pro-
tocols, proxy-based firewalls are the only solution. Therefore
it is believed that proxy-based firewalls are the trend for the
future. In next section, the paper focuses more on the study
of proxy-based firewalls.

3. STUDIES OF PROXY-BASED FIREWALL

 Proxy-based firewalls [2] are the best candidates for the
detection of application-layer attacks and complete content
filtering. For example, an HTTP proxy inspects HTTP re-
quests for URL filtering or the integrity of downloaded files,
while an SMTP proxy checks if any virus or malicious at-
tachments are contained in an email. HTTP and SMTP are
two of the most popular protocols on the Internet over the
years. It is not a surprise that HTTP and SMTP proxy filters
are often included in commercial firewall products and cer-
tain techniques are developed for the transparent deploy-
ment. Thus, in this section, the operation of transparent
HTTP and SMTP proxy is studied in details. Also, the sec-
tion reveals the reasons why proxy operation is only avail-
able for limited application protocols, and drawbacks of cur-
rent transparent deployment techniques.

3.1. The Operation of Transparent HTTP Proxy

 The section describes the current transparent deployment
of HTTP Proxy, how it works and limitations. The basic op-
eration for any proxy is almost the same. The only difference
is how each proxy program handles the application specific
tasks.

Basic proxy operation is a three step process.

Step 1: Proxy listens to a special port and waits for a cli-
ent request.

Step 2: Proxy handles the client request and analyzes for
essential information or signatures.

Step 3: Proxy initiates a second connection to the real
destination server, forwards the client request to
the server, and sends the server response back to
the client.

Table 1. Comparisons of Packet-Filtering and Proxy-Based Firewalls

Firewall Type Packet-filtering Proxy-based

Performance Excellent Poor

Deployment Easy Difficult

Inspection Scope Packet header or payload Application layer data

Client Support Not required Yes, SOCKS or proxy support is required.

4 The Open Information Systems Journal, 2008, Volume 2 Lee and Lai

 Fig. (1) illustrates the transparent deployment of HTTP
Proxy. Four roles are present in this transparent architecture,
Client, Firewall, Proxy and Web Server. Many commercial
firewall products incorporate proxy-based application filters
onto the products as a single system. For better illustration,
Proxy and Firewall are separate components here.

Fig. (1). Transparent HTTP proxy.

 Consider that Client (denoted as C) wants to access Web
Server (denoted as S) and then creates an HTTP connection
to S (denoted as the dotted line 1, between C and S). How-
ever, Firewall (denoted as FW) intercepts this connection,
modifies the destination address to P and then the connection
is redirected (by routing decision) to P. Then, a socket is
created between C and P (denoted as the solid line 2). FW
restores the original address on all the packets replied from
P. That is, after the packets from P are processed by FW, the
source address of the packets is S. C believes a socket is cre-
ated between S and itself while in fact the connection is cre-
ated between C and P. The above technique is called Redi-
rection. After three-way handshake is complete, C sends an
HTTP request for a web page. In HTTP 1.1, the request
header contains a “HOST” field, specifying the domain
name of the web server. Based on this field, P realizes C is
trying to connect to S. Then P would create a second connec-
tion to S (denoted as solid line 3). P sends another HTTP
request to S (sometimes simply forwards the original HTTP
request to S) and relays the replied HTTP Response back to
C. The two HTTP connections (from C to P and from P to S)
are remained open and are closed at the same time, which is
sometimes called On-the-Fly.

 The Redirection-based transparent deployment of HTTP
proxy generates the following drawbacks. First, HTTP 1.1
must be utilized or the “HOST” field must be present in the
HTTP request header, otherwise there is no way for the
Proxy server to know the real destination address of the web
server. Second, the end-to-end communication is not trans-
parent. The Redirection technique makes it possible for the
client believe it is communicating directly with the server,
but from the server’s point of view, all the connections are
initiated from the proxy. If address-based access control is

enforced by the server, the client would have problems ac-
cessing resources since the connection source is modified
(e.g. from C to P). Third, the Redirection settings on the
firewall must be carefully configured, or the Redirection
Loop may occur. As shown in Fig. (2), if Firewall does not
exclude the address of Proxy in the Redirection settings, the
second connection initiated from Proxy would be redirected
back to itself, forming a loop.

Fig. (2). Redirection loop of HTTP.

3.2. The Operation of Transparent SMTP Proxy

 The Redirection technique is also widely adopted for
building transparent SMTP proxy for the application-layer
filtering. The architecture is shown in Fig. (3). If Client (de-
noted as C) would like to deliver emails to Server (denoted
as S), C creates a connection with S (denoted as the dotted
line). The architecture is shown in Fig. (3) and the operation
of SMTP proxy-based firewall is similar to HTTP proxy-
based firewall. C would like to deliver an email and is creat-
ing a connection. Redirection is done on the Firewall (de-
noted as FW) and the connection from C is redirected to
Proxy (denoted as P). The real connection, which is redi-
rected to P, is the solid line 2. The dotted line 1 represents
the connection viewed by C. Then C follows the SMTP pro-
tocol to finish the email delivery and terminates the connec-
tion. Based on the command “RCPT TO” in the SMTP
transaction, P is able to locate the real destined mail server
(which is Mail Server, denoted as S). P creates an SMTP
connection to S (denoted as the solid line in Fig. (3) (b) for
the email delivery. Email delivery does not require real-time
processing, therefore on the contrary to the previously-
mentioned HTTP proxy operation, only one connection is
remained open at the same time. This kind of operation is
sometimes called “Store-and-Forward”.

 Several drawbacks are present in this transparent de-
ployment of SMTP proxy. First, if ESMTP Authentication is
required for email delivery, because P does not have a com-
plete valid credential list, sender identity fails to be verified.
In most cases, SMTP proxy is configured to simply assume
all email senders are legitimate users, and then just skip the
authentication stage. A security breach is created and that

The Design and Implementation of Transparent Application-Layer Filtering Platform The Open Information Systems Journal, 2008, Volume 2 5

results in a lot of spam abusing cases. Second, end-to-end
communication transparency is compromised since the email
server fails to know the real source address of the email
sender.

Fig. (3). Transparent SMTP proxy.

3.3. System Requirements

 As shown in Subsections 3.1 and 3.2, the Redirection
technique makes transparent deployment possible for both

SMTP and HTTP protocols even though some drawbacks

exist. However the Redirection technique is not suitable for
most application protocols. If an application protocol does

not contain any information regarding the real final destina-

tion, redirection technique fails. HTTP 1.1 requires “HOST”
field is present in the request header for the proxy to locate

the address of the original web server. The “RCPT TO”

command in SMTP protocol makes it possible for the proxy
to deliver emails to the final destination email server. If no

destination address is available in the request message de-

fined in an application protocol, the Redirection technique is
not applicable for this application. Unfortunately many ap-

plication protocols belong to this category, from the early

application protocols POP3, IMAP, NNTP or FTP, to the
latest IM, P2P and many online gaming protocols. Even

though the information of destination address is available in

the request messages, some problems remain to be overcome
due to protocol limitations, e.g., ESMTP Authentication

problem. Based on the above study, the Redirection tech-

nique is only applicable for limited applications. The Redi-
rection technique fails to satisfy requirements of transparent

deployment and thus is not a perfect solution. For developing

a real transparent application-layer firewall, the following
four system requirements are considered:

1. Transparency in Physical Network Installation

 To install a new filtering device demands basic domain
knowledge for network administrators, such as IP re-
subnetting, routing principles. The installation of more com-
plicated devices requires even more professional skills and
advanced knowledge. To fulfill the “Physical Network
Transparency” requirement, the device should possess the
plug-and-play (PnP) feature for easier installation.

2. No Configuration Required on Client Software

 Many proxy-based application firewalls require the re-
configuration on client software, such as the proxy setting in
web browsers, the server setting in SMTP/POP3/IMAP cli-
ent software, SOCKS setting in many IM software (MSN or
Yahoo Messenger) and P2P software. In a large network
with thousands of users, configuring all these client settings
is a great challenge. If any client software does not support
the use of proxy, then the proxy-based application firewalls
would fail to operate.

3. Transparency in End-to-End Communication

 By nature, the operation of proxy-based application fire-
walls is very similar to that of traditional proxy servers and
possesses the same problem. The source address of the sec-
ond connection is different from that of the first connection.
Failure to identify a client’s source address results in security
vulnerability. Both sides of a communication (client and
server) are supposed to be aware of the real addresses of
each other.

4. Applicable for Almost Any Application Protocols

 The traditional Redirection-based technique requires des-
tination related information be included in request messages.
But in fact few application protocols fulfill this prerequisite.
That is the main reason why commercial firewall products
only support transparent deployment for HTTP and SMTP
protocols only.

4. IMPLEMENTATION OF PLATFORM

 To fulfill the system requirements described above, the
paper introduces a transparent application-layer filtering
platform, on which software programmers can focus purely
on the development of the application filters while the pro-
posed platform solves most of the transparent deployment
issues. Based on the system requirements discussed in Sec-
tion 3.3, the proposed platform provides the corresponding
solutions as follows:

1. The transparent application-layer filtering platform

adopts the bridge architecture so that network admin-
istrators simply install the proposed platform in al-

most any preferred places with no need to modify any

configuration of neighboring routing devices (such as
subnetting, IP address or static route parameters).

Also installation of any third-party client tools or any

parameter settings (proxy or SOCKS etc) on the ap-
plication software on the user side is not a require-

ment any more.

2. The proposed platform must not compromise the end-

to-end transparency, which means both sides of the

communication are aware of the real addresses of
each other.

3. The platform provides an extended API, integrated

with standard BSD Socket API, for firewall pro-
grammers to develop any add-on software filters with

little extra efforts. Since most programmers are al-

ready familiar with BSD Socket API, the learning
curve of the extended API is minimized as much as

possible.

6 The Open Information Systems Journal, 2008, Volume 2 Lee and Lai

 Linux is a very popular network operating system on
which many commercial application-layer firewalls are
based. The proposed platform is implemented on Linux for
mainly two reasons. First, Linux is open source software
under GPL. The source code of Linux kernel, system utilities
and technical documentations are easily available on the In-
ternet, free of charge [14-25]. Second, Linux has gained its
popularity over the years. Many software developers already
have experiences on Linux programming. The proposed plat-
form modifies several modules (layer 2/3/4/7) of Linux ker-
nel and offers an extended API (based on BSD Socket API)
for firewall programmers in the development of application
filters. Finally an HTTP application filter is developed as an
example on this proposed platform for the demonstration
purpose. The proposed platform is referred as transparent
application-layer filtering platform throughout this paper.

4.1. Operations of the Platform

 The software filters on the proposed transparent applica-
tion-layer filtering platform is by nature a proxy-based archi-
tecture. If the second connection presents the same source
port and source address as those of the first one, both two
connections would seem identically the same. Both sides
would not know the existence of an intermediate proxy
server, thus the requirement of end-to-end transparency is
reached. For transparent proxy (filters) developers, as long as
the original socket pair information (source port, source ad-
dress, destination port, destination address) of the first redi-
rected connection is easily available, and the second connec-
tion can be masqueraded as the first one connection before
Redirection takes place, the requirement of end-to-end trans-
parency is fulfilled.

 In terms of internal operation, the system architecture of
the proposed application-layer filtering platform is shown in
Fig. (4). The proposed platform is composed of three system
modules: Bridge, Stateful Packet Inspection firewall (SPI)
and Application Filters.

 The bridge module (Fig. (4) (a)) retrieves the hardware
address of an incoming Ethernet frame, according the inter-
nal forwarding MAC table, forwards the frame via the cor-
rect interface. In the example of Fig. (4), Ethernet frames
(i.e., the Data Flow) received from the left network interface
are forwarded through the right network interface. SPI mod-
ule (Fig. (4) (b)) is a general firewall module, which pro-
vides connection tracking, determines the fate of packets
(accepting or denying), and performs network address trans-
lation when necessary. The Application Filter (Fig. (4) (c)) is
by nature a proxy daemon, which accepts a client connec-
tion, creates a server connection and performs content filter-
ing or attack inspection upon the transmitted data.

Fig. (4). Transparent application-layer filtering platform.

 The process to create connections between client and
server via this transparent proxy is simply described as fol-
lows. Many of the details are ignored here for easy under-
standing.

Step 1: A client would like to create a TCP connection to
the server and sends out the first TCP packet (ini-
tial SYN packet). The packet, now in the form of
an Ethernet frame, is received from the left inter-
face and is passed to the Bridge module. The
Bridge module realizes the frame contains an IP
packet and passes the packet to the upper SPI
module for further inspection.

Step 2: SPI module inspects the header, as well as the
payload, of this packet. If Redirection is enabled,
the destination address of the packet is rewrited
and the packet is passed to the upper layer pro-
gram (proxy daemon). If three-way handshake is
complete, a TCP connection is successfully estab-
lished between a client and the proposed platform.

Step 3: The proxy daemon retrieves the socket pair infor-
mation of the original connection (before Redirec-
tion is performed), such as original source address
(i.e., the IP address of the client), original source
port and original destination address (i.e., the IP
address of server) etc. The above operation, for-
merly impossible, is now available for applica-
tion-filter developers with the help of the extended
API set.

Step 4: The proxy daemon instructs the SPI module to
masquerade the second connection so that the sec-
ond server connection would have the same socket
pair as the original client connection.

Step 5: Following the instructions, SPI module performs
the network address translation and passes the
packet to the lower Bridge module.

Step 6: Bridge module fills the correct destination hard-
ware address and forwards the frame to the desti-
nation or the router for relaying.

Step 7: Bridge module passes the replied packet from the
server, such as the second SYN+ACK packet or
any other date packets, to the upper SPI module.

Step 8: SPI module performs the connection tracking and
realizes that this packet belongs to an existing
masqueraded connection.

4.2. System Description of the Platform

 The proposed platform is implemented on Linux. Though
bridging module, as well as firewall module, (known as net-
filter) are already provided by Linux, much integration work
remains to be done. The modified kernel modules and sys-
tem utilities are briefly listed here:

1. Several software bugs in bridging and netfilter code
are corrected, so that bridging module can forward
packets the upper layer netfilter module for further
process.

2. System utility tools, such as iptables, are modified so
that application-layer content filtering can be dynami-

cally enabled and disabled.

The Design and Implementation of Transparent Application-Layer Filtering Platform The Open Information Systems Journal, 2008, Volume 2 7

3. netfilter code is modified, so not only original socket
pair information of any redirected connections is pre-
served, but complex NAT function is also available.

4. BSD Socket API is extended. Upper applications can
retrieve the original socket pair information, instruct
netfilter to perform address translation on the self-
initiated connections. So that the socket pair of the
second server connection is the same as that of the
first client connection.

The proposed application-layer filtering platform provides:

1. Bridge mode deployment for plug-and-play installa-
tion.

2. By the help of netfilter, a proxy daemon intercepts
any preferred connection through the platform (Redi-
rection technique).

3. Software developers can retrieve the original socket
pair information, such as the original source address
and the original destination address. A program is
able to change the socket pair of any self-initiated
connections as wished.

4.3. Pseudo-Example for Developers

 For firewall developers, as long as the original socket
pair information is available and the masquerading action is
possible on the second self-initiated connection, building a
complete application-layer filtering firewall on the proposed
platform is a piece of cake. The migration of original proxy-
based filters does not require any huge modification. A
pseudo example is provided below for reference:

/*Waiting for a client connection after Redirection*/

while (client_sock = accept_connection()) {

orig_dst_addr = getOrigDst(client_sock);

/* get the original destination address of this redirected
connection, which is the real server address */

orig_src_addr = getOrigSrc(client_sock);

/* get the source address of this client */

dst_socket = getSocket();

/* prepare the socket for the second server connection
*/

setSockOrigAddr(dst_sock, orig_src_addr);

/* specify the source address of this socket to that of
the client */

dst_sock = connect(orig_dst_addr);

/* Open the second connection to the server */

proxy_action (client_sock, dst_sock);

/* this function performs most of the content filtering
work. */

}

4.4. Experiments on the Platform

 The subsection proves the achievability of the proposed
application-layer filtering platform. The platform is able to

support proxy-based filters on any existing TCP protocols.
To prove the concept as well as the extended API set, a ge-
neric proxy-based HTTP filter is written. The generic HTTP
filter running the proposed platform, presents a full-featured
application-layer HTTP firewall. The following experiments
are conducted to simulate user browsing activities. Packet
sniffing tools are utilized to collect experiment results.

 Fig. (5) shows the basic network diagram and compo-
nents used in the lab. Among them, Gateway is the proposed
platform. Two proxy daemons are running on the Gateway,
Squid and App_Filter. Squid is the most popular web cache
proxy software, mostly on the Unix-like systems while
App_Filter is the generic HTTP proxy developed based on
the extended API. In the lab, many advanced features of
Squid are temporarily disabled for simplicity. Therefore both
Squid and App_Filter are served as the role of simple HTTP
proxy only. The Gateway is equipped with two network in-
terfaces (eth0 and eth1) and is running in bridge mode. A
virtual bridge device fr0 is created with an IP address
192.168.6.123, whose member devices are eth0 and eth1.
Client C simulates users. Client C with IP 192.168.6.238
would create HTTP connections to Web Server, whose IP is
192.168.16.199, to download the default web page. The
packet-sniffing tool, tcpdump, is running on system inter-
faces of Gateway (both eth0 and eth1) and that of Client C
(eth1). The captured packets are carefully studied and com-
pared, mostly on the socket pair information and the se-
quence/acknowledge numbers in TCP header.

Fig. (5). Lab network diagram.

Three scenarios are considered as follows.

1. Direct Connection: Squid and App_Filter are stopped
and Redirection rules are disabled, as shown in Fig.
(6).

2. Common Transparent Proxy (Squid): Only Squid is
running on Gateway and Redirection rules are en-
abled, as shown in Fig. (7).

3. Proposed Transparent Proxy (App_Filter): Only
App_Filter is running on Gateway and Redirection
rules are enabled, as shown in Fig. (8).

 In scenario 1, no proxy daemons are running on Gateway
and Redirection rules are disabled. Gateway serves as a pure

8 The Open Information Systems Journal, 2008, Volume 2 Lee and Lai

bridge, simply forwarding packets according to the internal
forwarding table. When Client C opens an HTTP connection
to Web Server, only one connection is created between Cli-
ent C and Web Server. The result of tcpdump, running on
several interfaces, displays the connection information. For
simplicity, only socket pair information (denoted as tcp@)
and sequence/acknowledge numbers (denoted as seqno) of
the third packet are shown here. The information gathered at
each system interface is shown as follows:

Fig. (6). Direct connection.

In Client C, the summary of the third packet is:
tcp@ [192.168.6.238:39486 192.168.16.199:80]
seqno 1520362652 2262076546

In Gateway LAN (eth1), the summary of the third packet is:
tcp@[192.168.6.238:39486 192.168.16.199:80]
seqno 1520362652 2262076546

In Gateway WAN (eth0), the summary of the third packet is:
tcp@[192.168.6.238:39486 192.168.16.199:80]
seqno 1520362652 2262076546

 The three packets gathered from three different network
interfaces have the same socket pair and se-
quence/acknowledge numbers. It is proved that the three
packets are in fact the same packet, and are belonging to the
same connection (1) as shown in Fig. (6).

 In scenario 2, Squid is running on Gateway (see Fig. (7))
and listens to TCP port 3128. Redirection rules are config-
ured to redirect connections of tcp@80 to a local process
running on tcp@3128. Connections from Client C are han-
dled by the local process Squid on Gateway. By parsing the
“HOST” field of an HTTP Request Header, Squid is able to
retrieve the fully qualified domain name (FQDN) of the real
destination web server. Then Squid opens a second connec-
tion to the web server, which is 192.168.16.199 in this case.
Packet-sniffing tool, tcpdump, is running on each interface to

display the connection information. For simplicity, only
socket pair information (denoted as tcp@) and se-
quence/acknowledge numbers (denoted as seqno) of the third
packet are shown here. The information gathered at each
system interface is shown as follows:

Fig. (7). Common transparent proxy (Squid).

In Client C, the summary of the third packet is:
tcp@ [192.168.6.238:64880 192.168.16.199:80]
seqno 314078504 1225491954

In Gateway LAN (eth1), the summary of the third packet is:
tcp@ [192.168.6.238:64880 192.168.16.199:80]
seqno 314078504 1225491954

In Gateway WAN (eth0), the summary of the third packet is:
tcp@[192.168.6.123:39643 192.168.16.199:80]
seqno 121085213 1053742436

 The socket pairs as well as the sequence/acknowledge
numbers viewed from Client C and Gateway LAN (eth1) are
exactly the same. That is, by the use of Redirection tech-
nique, Squid successfully hides itself to Client C. Client C
believes it is communicating directly with Web Server.
However, in Gateway LAN (eth0), the result of a different
socket pair indicates Web Server knows the source address
of the connection is Gateway, instead of Client C. Therefore,
it is concluded that Squid does not satisfy the requirement of
end-to-end transparency.

 In scenario 3, App_Filter, is running on Gateway (see
Fig. (8)) and listens to TCP port 9000. Note that App_Filter
is simply a generic proxy developed with the extended API
set on the proposed platform. It does not need to parse the
HTTP Request Header but simply forwards data received
from one connection to the other connection and vice versa.
Therefore, App_Filter is not protocol specific but suitable for
almost any TCP applications. The program is so simple that
the actual code is less than 150 lines. Because of enabled
Redirection rules, all HTTP connections (tcp@80) sent from
Client C are redirected to tcp@9000 and handled by

The Design and Implementation of Transparent Application-Layer Filtering Platform The Open Information Systems Journal, 2008, Volume 2 9

App_Filter. This is, the first connection (1) is opened be-
tween Client C and App_Filter. App_Filter uses the extended
function call getsockopt() to retrieve the original source as
well as destination socket information (before redirection),
and then opens a second connection (2) to Web Server. Upon
the creation of the second connection, App_Filter uses the
extended function call setsockopt() to instruct netfilter to
perform masquerading so that the source socket pair of the
second server connection is the same as that of the first client
connection. The result of tcpdump, running on several inter-
faces, displays the connection information. For simplicity,
only socket pair information (denoted as tcp@) and se-
quence/acknowledge numbers (denoted as seqno) of the third
packet are shown here. The information gathered at each
system interface is shown as follows:

Fig. (8). Proposed transparent proxy (App_Filter).

In Client C, the summary of the third packet is:
tcp@ [192.168.6.238:9186 192.168.16.199:80]
seqno 778822275 1681053179

In Gateway LAN (eth1), the summary of the third packet is:
tcp@ [192.168.6.238:9186 192.168.16.199:80]
seqno 778822275 1681053179

In Gateway WAN (eth0), the summary of the third packet is:
tcp@[192.168.6.238:9186 192.168.16.199:80]
seqno 1688383135 15533100426

 The socket pairs as well as the sequence/acknowledge
numbers viewed from Client C and Gateway LAN (eth1) are
the exactly same. Redirection technique successfully helps
App_Filter hides itself to Client C. Client C believes it is
communicating directly with Web Server. From the result
gathered on Gateway LAN (eth1) and Gateway WAN (eth0),
the two packets have the identical socket pair but different
sequence numbers. It is proved that the two packets are dif-
ferent packets, and are belonging to two different connec-
tions respectively. However because of the identical socket
pair, Client C and Web Server believe that they are in direct
communication with each other without noticing the exis-
tence of Gateway.

 Based on the above experiments, the platform has suc-
cessfully demonstrated itself to be a truly application-layer
filtering firewall. Firewall programmers can focus most of
their time on the study of protocol specifications, and the
development of respective software filters without worrying
about any issues in actual transparent deployment.

5. CONCLUSION

 Traditional packet-filtering firewalls only examine packet
integrity on a per packet basis, while proxy-based firewalls
analyze the application-layer data to provide 100% complete
security. Besides deployment issues, current transparent ap-
plication firewalls only support a limited number of proto-
cols and the products all posses the same problem – the
source address is always modified. To our knowledge, there
is no commercial product to solve the problem. Also, we
have not found any research literature discussing on possible
solutions. Therefore, the paper studies the concept of trans-
parency, presents the drawbacks of current transparent HTTP
and SMTP deployment, and proposes a feasible solution.
The realization of the idea is based on Linux OS. The bridge
mode is suitable for plug-and-play installation and an ex-
tended API set is provided for firewall developers. The ex-
tended API is compatible with standard BSD Socket API so
that the migration of existing proxy-based filters is extremely
easy. The operation of proxy-based filters is to intercept in-
coming/outgoing connections, acquire the original connec-
tion information, and then analyze the data content to
achieve application-layer protection. There is no need to
adjust any proxy/SOCKS settings of client software. The
proposed platform supports almost every kind of TCP appli-
cation protocols, from the early Internet protocols HTTP,
SMTP, POP3, NNTP or FTP, to the latest IM, P2P and many
online gaming protocols.

REFERENCES

[1] A. Habtamu. “An Overview of Firewall Technologies.” Internet:
heim.ifi.uio.no/~abie/FirewallTechnologies.pdf, January, 2000

[May 9, 2007].
[2] G. Mark. “Firewall and Proxy Server HOWTO.” Internet:

tldp.org/HOWTO/Firewall-HOWTO.html, February 26, 2000 [May
9, 2007].

[3] Check Point. “Securing Networks With Next-Generation Unified
Threat Management.” Internet: www.mark-ent.com/documents/

WhitePaper.pdf, June, 2006 [May 9, 2007].
[4] D.G. Nelly. “Patterns for Application Firewalls.” Internet: hill-

side.net/plop/2004/papers/ndelessygassant0/PLoP2004_ndelessyga
ssant0_0.doc, June, 2004 [May 10, 2007].

[5] Cedric. “Layer 2 filtering and transparent firewalling.” Internet:
sid.rstack.org/pres/0307_LSM03_L2_Filter.pdf, July 11, 2003

[May 10, 2007].
[6] Constantinos. “BSD Sockets API.” Internet: pages.cs.wisc.edu/~

lhl/cs740/assignments/references/sockets_const.ps, April, 1999
[May 3, 2007].

[7] J. Moscola, J. Lockwood, R.P. Loui etc. “Implementation of a
Content-Scanning Module for an Internet Firewall,” presented at

the 11th FCCM, Napa, C.A., 2003.
[8] W. Sebastian. “Investigating large-scale Internet content filtering.”

M. Sc. thesis, University of Dublin City, Ireland, 2006.
[9] P. Akritidis, K. Anagnostakis and E.P. Markatos. “Efficient Con-

tent-Based Detection of Zero Day Worms.” in IEEE International
Conference, 2005, pp. 837-843.

[10] Shannon and D. Moore. “The spread of the Witty worm.” Security
& Privacy Magazine, IEEE, vol. 2, pp. 46-50, July-August 2004.

[11] Z. Chen and C. Lin. “AntiWorm NPU-based Parallel Bloom Filters
for TCP/IP Content Processing in Giga-Ethernet LAN.” in Local

Computer Networks IEEE Conference, 2005, pp. 15-17.

10 The Open Information Systems Journal, 2008, Volume 2 Lee and Lai

[12] K. Wang and J.S. Salvatore. “Anomalous Payload-based Network

Intrusion Detection.” presented at the 7th RAID, France, 2004.
[13] Mike and V. George. “Fast Content-Based Packet Handling for

Intrusion Detection.” Internet: cse.ucsd.edu/Dienst/UI/2.0/ De-
scribe/ncstrl.ucsd_cse/CS2001-0670, May 7, 2001 [May 14, 2007].

[14] LXR community. “Linux Cross Reference.” Internet: lxr.linux.no/,
2007 [May 15, 2007].

[15] R. Rusty and W. Harald. “ Linux netfilter Hacking HOWTO.”
Internet: www.netfilter.org/documentation/HOWTO/netfilter-

hacking-HOWTO.html, July 2, 2002 [May 17, 2007].
[16] R. Rusty. “Packet Filtering HOWTO.” Internet: www.netfilter.org/

documentation/HOWTO/packet-filtering-HOWTO.html, January
24, 2002 [May 17, 2007].

[17] R. Rusty. “Networking Concepts HOWTO.” Internet:

www.netfilter.org/documentation/HOWTO/networking-concepts-
HOWTO.html, The netfilter webmaster, July 29, 2001 [May 17,

2007].
[18] R. Rusty. “NAT HOWTO.” Internet: www.netfilter.org/ documen-

tation/HOWTO/NAT-HOWTO.html, January 14, 2002 [May 22,
2007].

[19] M. Fabrice. “Netfilter Extensions HOWTO.” Internet: www.
netfilter.org/documentation/HOWTO/netfilter-extensions-

HOWTO.html, October 22, 2006 [May 22, 2007].

Received: January 01, 2008 Revised: February 06, 2008 Accepted: February 07, 2008

