
 The Open Information Systems Journal, 2008, 2, 11-16 11

 1874-1339/08 2008 Bentham Science Publishers Ltd.

Tag Libraries as Fifth Generation Languages

Mark Cyzyk*

Scholarly Communication Architect, Library Digital Programs Group, The Sheridan Libraries, Milton S. Eisenhower

Library, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Abstract: This essay weighs the notion that Web-based tag libraries represent the fifth generation of computer languages.

A brief survey of the history of computer languages is provided as is an indication of why it is useful to conventionally

categorize computer languages into “generations”. The essay argues that the current conventional ascription of genera-

tions is incorrect and that it should be replaced with one based on what the author terms “the principle of abstraction”.

Keywords: Web-based tag libraries, generations of computer languages, scripting languages, history of computer languages,
fifth generation languages.

TAG LIBRARIES AS FIFTH GENERATION LAN-

GUAGES

 Web-based tag libraries represent the fifth generation of
computer languages.

 In this essay I will explain what tag libraries are, what the
generations of computer languages are and why they are
important, how our conventional list of generations of com-
puter languages has gotten off-track and is incorrect, and
why tag libraries should properly be construed as falling into
a fifth generation of computer programming languages.

What Tag Libraries Are

 Tag libraries are a form of Web-based programming lan-
guage, similar to the tag-based HTML, yet much more pow-
erful. Unlike HTML, which is merely a markup language
used to describe to a Web browser how content should be
rendered, tag libraries provide powerful programming con-
structs similar to many other programming languages and
thus can be used to create full-fledged Web applications with
complex business logic.

 For example, consider the following snippet of HTML:

<h3>3/1/2008</h3>

 This simply outputs a string to the browser window, and
that string is formatted as an HTML H3 header. This output
is hard-coded, static.

 Now consider the following snippet of ColdFusion
Markup Language (CFML), a Web-based tag library:

<cfset thisDate = dateFormat(Now(),
'mm/dd/yyyy')>

<cfoutput>

 <cfif dateCompare(thisDate,
'4/15/2008') IS 0>

 <h2>#thisDate#</h2>

 <cfelse>

*Address correspondence to this author at the Scholarly Communication

Architect, Library Digital Programs Group, The Sheridan Libraries, Milton

S. Eisenhower Library, Johns Hopkins University, 3400 North Charles

Street, Baltimore, MD 21218, USA; Tel: (410) 516-0819; Fax: (410) 516-

6229; E-mail: mcyzyk@jhu.edu

 <h3>#thisDate#</h3>

 </cfif>

</cfoutput>

 This code supplements the HTML and adds intelligence
to it while retaining the simplicity and elegance of a tag-
based language. The code first sets a variable, “thisDate”,
equal to the mm/dd/yyyy-formatted value of the current sys-
tem date. It then compares that date with April 15, 2008. If
the two are equal, or if thisDate is greater than April 15,
2008, the value of the thisDate variable is output in an
HTML H2 header. If not, then the value of the thisDate vari-
able is printed in an HTML H3 header.

 The output is not hard-coded; it is dynamically generated
based on program logic.

 All tag libraries provide the facility to set and read vari-
ables, provide a full set of conditional logic constructs, pro-
vide string and number formatting functions, and provide the
facility to read and write to external databases. In short, they
provide the basic functionalities of third generation lan-
guages and scripting languages, but often without the com-
plexity associated with such languages. Thus they are often
considered to exist at a higher level of abstraction than, say,
3GL or scripting languages.

 Examples of this type of programming language include
the venerable ColdFusion Markup Language (CFML) used
in the illustration above and the relatively recent JavaServer
Pages Standard Tag Library (JSTL).

The Traditional “Generations” of Languages

 The history of programming languages is long, interest-
ing, and instructive not only in the sense that by having a
solid understanding of the evolution of any human artifact
and practice leads to enlightenment about who we are and
how we got here, but also in the sense that by looking at how
changes were brought about in the programming world we
gain an understanding of where programming languages
might lead in their future evolution.

 The first generation language consisted of machine code.
Programming during this generation consisted of issuing
explicit instructions to a particular processor that resulted in

12 The Open Information Systems Journal, 2008, Volume 2 Mark Cyzyk

swapping values among memory locations. This process was
not only relative to the processor for which one was pro-
gramming, but it was also extremely error prone due to the
great distance between machine code and human readable
natural language. Clearly, a less tedious method of pro-
gramming was called for.

 The second generation of language was assembler. As-
sembler, like machine code, was written relative to a particu-
lar processor. However, assembler represented the first ab-
straction away from the specifics of the hardware in that it
provided macros and mnemonic devices that could be used
as shortcuts for machine code. Even so, assembler remained
obscure and convoluted, and programming with it was only
slightly less tedious than programming in machine code.

 The third generation of languages (3GL) was when true
competition and design of computer languages began; it was
during this stage in the evolution of programming languages
that design and diversity flourished. Examples of 3GLs in-
clude: C; C++; Pascal; Smalltalk; Lisp; Ada; Fortran; Basic;
and Cobol. Oftentimes, a 3GL was designed to meet the pro-
gramming needs of those working on a specific problem or
within a specific industry. For example, Cobol was largely
used in the business world, Fortran was (and still is) used
primarily for scientific programming; Ada is used for mili-
tary applications; and Lisp was (and remains) a good choice
for artificial intelligence programming.

 The fourth generation of languages includes the Struc-
tured Query Language (SQL), macro languages, and other
specialized, languages. The fourth generation has always
been a sort of catch-all for any higher-level language that
could not easily be classified as a true 3GL.

Why Talking of Generations of Languages is Important

 Categorizing computer languages by “generation” is im-
portant because it allows us to not only trace the evolution of
these unique human artifacts, but to clarify the conceptual
specificity of a language and the distance from natural lan-
guage to which it stands. Categorizing computer languages
by generations allows one to describe, quickly and suc-
cinctly, just how difficult a programming task will typically
be to achieve in a particular set of languages. And this, of
course, has ramifications for language choice when working
in a particular domain of activity. For example, if one is
writing device drivers one will need to choose a language
designed for low-level interaction with hardware. However,
if one does not need to implement such interaction, a low-
level language with all its complexities is not only unneeded,
but would be an impediment. Talking of generations of lan-
guages is important because, in a very practical sense, having
languages categorized by complexity and having them prop-
erly situated in groups relative to their distances from the
machine facilitates language choice and aligns those choices
with the practical tasks required by any given programming
project.

 Generalizing on the history of programming languages,
we arrive at the following principle: A new generation of
computer language represents an abstraction, away from the
complexity and specificity of machine code and toward more
understandable and powerful natural language constructs.

Why Traditional Demarcations of Generations are
Wrong

 It can be seen, when looking at the traditional demarca-
tions of computer languages, that they illustrate this principle
for the most part. Certainly the first three generations clearly
illustrate a move away from early, primitive machine code to
more natural language constructs. However, insofar as the
fourth generation of languages is comprised of a hodgepodge
of otherwise unclassifiable languages, this breaks with the
principle of abstraction. In fact, there is a type of language
that deserves its own generational classification at the 4GL,
but would typically be included as a 3GL. This type of lan-
guage includes the so-called scripting languages. Scripting
languages are interpreted languages, typically used as “glue”
languages to tie together disparate modules written in other
lower-level languages [1]. They are, though, also used to
create full-fledged applications. Such languages as Python,
Perl, PHP, ASP, TCL, and Ruby fall into this category. And
in addition to being interpreted, their syntax is oftentimes
much more like natural language than 3GLs. So scripting
languages are different enough from 3GLs that they deserve
their own generational demarcation, and so should be placed
directly above the 3GLs, at the fourth generation.

Tag Libraries as The Fifth Generation

 Being true to the principle of abstraction, we can and
should then place tag libraries at the fifth generation. Insofar
as they abstract away the complexities of even the relatively
simple scripting languages at the fourth generation, they de-
serve their own generational demarcation at the fifth genera-
tion.

 Comparing tag libraries with scripting languages, their
nearest neighbor in the evolutionary chain, is particularly
instructive. For example, compare what’s involved in per-
forming a simple database query and displaying the result in
PHP, a scripting language, and JSTL and CFML, two tag
libraries. First, PHP:

<?php

$connection = mysql_connect(“local-
host”, “someuser”, “somepassword”);

if (! $connection)

 die(“Couldn’t connect!”);

mysql_select_db($db, $connection);

 or die(“Couldn’t open DB!”);

$result = mysql_query(“SELECT * FROM
TBLMAIN”);

while ($row = mysql_fetch_row($result
))

 {

 foreach ($row as $field)

 print “$field
\n”;

 print”<p>\n”;

 }

mysql_close($connection);

?>

Tag Libraries as Fifth Generation Languages The Open Information Systems Journal, 2008, Volume 2 13

Then JSTL:

<sql:setDatasource
driver=”com.mysql.jdbc.Driver”
url=”jdbc:somedatabase:.” user=”sa”
password=”somepassword”
var=”mydatasource”>

<sql:query var=”result” sql=”SELECT *
FROM TBLMAIN” />

<c:forEach items=”$result.rows”
var=”row”>

 <c:out value=”${row.firstname}”/>

 <c:out value=”${row.lastname}”/>

 <p>

</c:forEach>

And in CFML this becomes even simpler:

<cfquery datasource=”someDSN” pass-
word=”somepassword” name=”results”>

SELECT * FROM TBLMAIN

</cfquery>

<cfoutput query=”results”>

$firstname

$lastname

<p>

</cfoutput>

 The key here is to note that the PHP example performs
several relatively low-level functions to gain a useable con-
nection to the database and to issue a query. It first uses the
“mysql_connect” function to create a connection. It then
uses the “mysql_select_db” function to select the correct
database. The “mysql_query” function is used to actually
pass an SQL query through to the database. And finally, the
“mysql_close” function is used to close the previously-
opened connection to the database.

 Both JSTL and CFML largely hide this complexity from
the programmer. JSTL encapsulates database connectivity
functions in a single tag, the sql:setDataSource tag. ColdFu-
sion assumes that a datasource name (DSN) has already been
set up via the ColdFusion administrative utility. In both
cases, the syntax is much easier to read than that of the more
verbose PHP. The tag libraries hold to the principle of
abstraction: The programmer does not need to know about
how database connections are made, only that one is
available for him to pass his SQL query into [2].

 It is also interesting to note how browser output is han-
dled. In PHP an explicit “print” statement must be issued in
order to output any HTML to the screen. The HTML code
must therefore be properly wrapped in quotation marks as
required by the print statement, which itself must be termi-
nated with a semi-colon. In JSTL and CFML, however, the
situation is just the opposite. Here the assumption is that all
output will occur on an HTML page, so HTML output does
not need to be wrapped in any special syntax – rather, it is
the existence and display of variable values that must be
properly specified. JSTL does this via the <c:out /> tag;

CFML wraps any code outputting the contents of variables
in <cfoutput> tags. Such output happens, therefore, inline
with the rest of a normal HTML page. Using these tag librar-
ies, it’s as if they were merely extensions, albeit very power-
ful extensions, to HTML.

 In both cases, JSTL and CFML, the total code required to
complete the task is much shorter than that required by PHP.
This has implications with respect to developer productivity
[3], especially when consideration is taken of the hundreds
of database queries that may be required by the average ap-
plication.

 Consider another example, that of programmatically re-
trieving a page from the Web and displaying it to the client
browser:

In ASP.NET [4]:

<%

Dim objWinHttp

Dim strHTML

Set objWinHttp =
Server.CreateObject("WinHttp.WinHttpRequ
est.5")

objWinHttp.Open "GET",
"http://someserver.com/somedirectory/som
efile.html"

objWinHttp.Send

strHTML = objWinHttp.ResponseText

Set objWinHttp = Nothing

%>

<%= strHTML %>

In JSTL this same functionality is im-
plemented by the following:

<c: import
url=”http://someserver.com/somedirectory
/somefile.html” />

 This single line of code not only retrieves the contents of
the page specified by the URL, it also automatically outputs
it to the client browser without requiring any other explicit
instruction to do so.

Historical Notes

 Princeton historian Michael Mahoney captures the mo-
ment when the movement between generations of computer
languages began. In contrast to the previous work of engi-
neers in creating more and more function libraries for as-
semblers, he notes: “The first high-level programming lan-
guages, perhaps most famously FORTRAN in 1957, fol-
lowed over the next three years by LISP, COBOL, and AL-
GOL, took a quite different approach to programming by
differentiating between the language in which humans think
about problems and the language by which the machine is
addressed.” [5] It is this distinction that serves as the impetus
for the creation of generations of computer languages. How
can we solve problems and get work done without having to
directly address the machine in its native language? Thus
begins the history of computer languages.

14 The Open Information Systems Journal, 2008, Volume 2 Mark Cyzyk

 This history is detailed in Jean Sammet’s monumental
1969 study, Programming languages: History and funda-
mentals [6] as well as in the proceedings of both the first
ACM SIGPLAN History of Programming Languages con-
ference in 1978 [7] (“HOPL-I”) and the second one
(“HOPL-II”) in 1993 [8]. While these works are primarily
devoted to tracing the origins and evolution of individual
programming languages, the keynote address of HOPL-II,
“Language Design as Design”, by Frederick Brooks is rele-
vant to the notion of ever-evolving languages. In this key-
note, Brooks poses the question: “What have the existing
high level languages contributed to software?” As he notes,
the high level languages have first resulted in a “five-to-one
productivity improvement” and secondly have resulted in a
much higher level of software reliability by simplifying the
syntax of statements, for after all “if you cannot say it, you
cannot say it wrong”. But most importantly, as Brooks points
out, “the high level languages by their abstraction have given
us ways of thinking and ways of talking to each other”. In-
stead of talking to the machine, we begin to talk to one an-
other; instead of spending time solving problems related to
communication with the machine, we can spend time solving
problems – our problems -- that lend themselves to pro-
grammatic solution. These thoughts and sentiments are to be
found at the very genesis of language evolution, and they are
echoed more recently as well.

 In a 2002 Webcast interview on theserverside.com [9],
Shawn Bayern, reference implementation lead for the JSTL,
was asked to comment on the JSTL "expression language".
The transcript of his response is telling:

…[T]o a certain extent, all languages share a com-
mon bond and we are to a certain extent just replac-
ing Java with a different language here. And we don't
do that because we don't like Java, we do it instead
because we don't think our users know Java necessar-
ily. The advantage of an expression language is that
users who use it don't have to understand Java types.
They don't have to understand method invocation,
exception handling, all of the different syntactical
ways of producing an expression in Java, you know,
all of the different Java productions because again,
you have to know all of them if you're going to main-
tain pages that use them; you know, even if you've
never seen the conditional operator or some feature
of Java syntax that you might encounter, like a
scriptlet. So the JSTL expression language hides all
of that. It does the type conversions that are by and
large appropriate and still safe to do in this environ-
ment so that you don't have to worry about whether
you've got a string or a number as long as it's a
parsable number, a simple number, you can pass it
through. To give you an example all request [pa-
rameters] come into a JSP page as strings so if you
want to pass this to a paging tag or something that
let's you display boundaries of data, 'show me the
first through the tenth', and you want to get that from
a request parameter, you in Java have to convert it to
a number and have to know how to do that. In JSTL
you don't have [to]. You just say param.foo and
you've got the number as a number [10].

 The JSTL expression language hides much of the com-
plexity of the underlying Java language in much the same
way that 3GLs hide the complexities of the underlying ma-
chine code into which they compile. The principle of ab-
straction is at work here and seems to be one of the main
motives fueling Bayern’s efforts in creating the reference
implementation of this language. In the end, the same work
gets done – in this case the work consists of gleaning, then
using, request parameters to a page – but without the com-
plexity.

 Bayern and Brooks would agree: Movement in the evolu-
tion of programming languages serves to make it easier to
simply state, and to solve, the problems appropriate for ex-
ploration and resolution through the use of computing tech-
nologies.

Criticisms

 There are at least three criticisms of the thesis here under
consideration: (1) Proposals for what sort of languages
should occupy the Fifth Generation designation was already
made long ago; (2) Web-based tag libraries are not general
purpose programming languages and so we should not seek
to attribute an all-encompassing designation to what is a spe-
cialized domain of language; and tied to this (3) Web-based
tag libraries are, in fact, too abstract to be generally useful.

 It is true that the phrase “Fifth Generation Language”
was once used to refer to two very different types of pro-
gramming languages. First, it was used in the eighties and
nineties to refer to “constraint” based languages like Prolog
and Lisp, languages used in artificial intelligence research
and in the construction of expert and knowledge-based sys-
tems. It, alternatively, was also used to describe the so-called
“visual” programming languages, e.g., Visual Basic – lan-
guages that in their time were unique in relying heavily on
graphical code generators. Nevertheless, it does not seem
like the designation “Fifth Generation Language” has stuck
to either of these concepts, and, if my thesis that generations
of languages follow a path of abstraction away from machine
code is taken seriously and construed as being the main prin-
ciple behind the movement from generation to generation,
nor should it.

 The second criticism, that Web-based tag libraries are too
specialized to deserve such a general designation as “Fifth
Generation Languages” is more problematic. On the one
hand it is easy to sympathize with the criticism that Web-
based languages are only good for a particular domain of
activity, Web-application development, and that whatever
we end up calling Fifth Generation should apply to a much
broader domain. In short, if we are to move to a new genera-
tion of language then that language or that set of languages
must be general enough to warrant it. However, this criticism
overlooks the fact that the technological and computing
landscape in this, the early 21

st
 century, has dramatically

changed. At this point, even the notion of operating system is
in flux. At this point, the Web itself has become the “cloud”
into which data is dispersed, stored, and retrieved. Small
chunks of executable code are distributed throughout this
cloud, and individual applications are “mash-ups” of them,
creating novel and unique molecules of functionality out of
atomic modules and components. Web-application pro-
gramming is no longer in a period of wait-and-see; it is here-

Tag Libraries as Fifth Generation Languages The Open Information Systems Journal, 2008, Volume 2 15

and-now. And Web-based tag libraries, while not universally
adopted as of yet, promise to be its next generation of lan-
guages. They are, indeed, the general purpose languages of
the Web.

 The third criticism, if it is accepted as valid, is that Web-
based tag libraries are in fact too general, i.e., they don’t give
you access or low-level control over such things as network
protocols and database connectivity. Entire books have been
written about JDBC, for example, illustrating the myriad
connection attributes and fine-grained control over database
connectivity one has in the Java world. However, the prob-
lem with this is that not only do you have the opportunity for
such control with JDBC but you also must issue your con-
nectivity commands using that fine-grained control if you are
to accomplish anything. Now the question arises, how often
will you actually need to use those low-level features? If the
answer is “never” or “almost never”, then perhaps it’s best to
abstract what you are doing to a higher level? Isn’t this ex-
actly what the designers of 3GLs sought when they moved
away from machine code? This is precisely what the tag li-
braries have done for Web application programming. So
criticizing Web-based tag libraries as being too abstract
misses their point.

COMMENT AND CONCLUSION

 The simplicity with which the Web-based tag library
accomplishes its goals recalls, again, Frederick Brooks’
trenchant comment about spare syntax: “[I]f you cannot say
it, you cannot say it wrong”. And this naturally has implica-
tions for developer productivity. It is a commonplace that
developer productivity can be quantified by measuring lines
of code produced over a given period of time. If a program-
ming task can be accomplished in less lines of code, it stands
to reason that productivity will increase. Build the kind of
simplicity necessary to achieve this into the programming
platform itself and productivity will increase, as Brooks
noted, by orders of magnitude. The continuing work of Pro-
fessor Lutz Prechelt at the Freie Universität Berlin bears this
out. His Software Engineering research group there has de-
vised the “Plat_Forms” project [11] -- “a competition in
which top-class teams of three programmers compete to im-
plement the same requirements for a web-based system
within 30 hours, each team using a different technology plat-
form (e.g. Java EE, NET, PHP, Perl, Python, or Ruby on
Rails).” Further, “[i]ts purpose is to provide new insights
into the real (rather than purported) pros, cons, and emergent
properties of each platform.” The first Plat_Forms contest
was held January 25-6, 2007 in Nürnberg, Germany. Unfor-
tunately, the three platforms tested, Java, PHP, and Perl, did
not include tag libraries. Nevertheless, to briefly summarize
the findings of this first competition, the languages requiring
the smallest number of lines of code to accomplish the as-
signed tasks were Perl in first place, PHP in second, and Java
in third. At first, it seems odd that syntax-heavy Perl would
take the lead in this, and yet Perl is also infamous for having
an Obfuscated Code Contest [12] in which the winning en-
tries were notorious for completing the task in a very short
string of head-scratchingly ponderous code: Perl is syntax
heavy, yet it is far enough away from the machine that it
packs a lot of functionality into each language construct, so
much so that its terseness lends itself to easy (and hilarious)
obfuscation. It is not surprising, therefore, that it was able to

satisfy the requirements of the Plat_Forms competition in
less lines of code than the other languages. That said, the
hope is that the next Plat_Forms competition, to be held in
2008 or 2009, will include entries implemented in the tag
libraries mentioned in this article. While the results of the
first contest lean toward the conclusion that abstraction is the
essence of simplicity when it comes to programming lan-
guages, only through empirical verification such as that of-
fered by future Plat_Forms contests can such a judgment be
validated.

 If the argument that the generations of computer lan-
guages should be determined based upon the principle of
abstraction, i.e., based upon how far from machine code they
are in a functional and expressive sense, and how much
closer to natural language constructs they are, then it follows
that the conventional evolution from first to second to third
to fourth generation languages is flawed. Specifically, the
fourth generation seems out of line with the continuity of the
previous evolution of languages. Arriving after the 3GLs
were the scripting languages, which represent an abstraction
away from the 3GLs toward simpler, more powerful natural
language expressiveness and functionality. And at the end of
this spectrum, at the current time, reside the new Web-based
tag libraries, which are simpler and more powerful than the
scripting languages. In order to better account for and to
categorize these phenomena, it is better to consider scripting
languages as the fourth generation of computer languages,
and Web-based tag libraries as the fifth generation.

 In the current IT climate, circa early 2008, there is
movement afoot from all quarters to streamline systems lan-
guages such as Java and to abstract away their complexities
without sacrificing practical power. In the Java world,
frameworks such as Struts and Spring [13] are intended to
simplify the design and construction of J2EE (Java 2 Enter-
prise Edition) Web applications. On the Java platform alone
one can now write software in the Tcl, Python, and Ruby
scripting languages using the Jacl, Jython, JRuby interpreters
that are written in Java and run within a Java Virtual Ma-
chine (JVM). Moreover, with the advent of the so-called
"Java scripting languages” [14], e.g., Groovy, BeanShell,
JudoScript, language designers are implementing scripting
languages on top of the Java platform that use Java syntax,
albeit greatly simplified and distilled down to its most useful
essentials. Just like with tag libraries, the principle here is the
same: Abstract away the language complexity, move its ex-
pressiveness further away from the machine and closer to
natural language, and the end result is a language that is sim-
ple, powerful, and even elegantly beautiful. It has been my
goal in this paper to illustrate that throughout the history of
computing the "generations" of languages have traditionally
followed this path, and that this selfsame path points the way
toward future generations.

 This path seems to converge on a language, or family of
languages, that is pared-down, simple, understandable, and
elegant, yet capable of being used to write applications of
extraordinary complexity and power. It seems to point to-
ward a future in which the languages and frameworks we use
fade into the background, becoming merely the manner in
which we express the complex algorithms and applications
that enable and facilitate the computing work of the world.

16 The Open Information Systems Journal, 2008, Volume 2 Mark Cyzyk

BIOGRAPHICAL INFORMATION

 Mark Cyzyk is the Scholarly Communication Architect
in the Library Digital Programs group of The Sheridan Li-
braries at Johns Hopkins University, Baltimore, Maryland,
USA. He was, for many years, the Web Architect in the en-
terprise IT group at Johns Hopkins.

REFERENCES

[1] The seminal article on this topic is: J. K. Ousterhout. “Scripting:

higher level programming for the 21st century.” IEEE Comput., vol.
31(3), pp. 23-30, March 1998.

[2] In this sense, tag libraries are “declarative” languages, not “impera-
tive” languages, i.e., they state what they want the computer to do

and don’t therefore pay much attention to how it must implement a
particular action. For more about the declarative/imperative distinc-

tion, see: M. Scott. Programming language pragmatics. San Fran-
cisco, CA: Morgan Kaufman, 2000, pp. 5-6.

[3] For a fascinating and important study of this, see: L. Prechelt. “An
empirical comparison of seven programming languages.” IEEE

Comput., vol. 33(10), pp. 23-29, October 2000.
[4] This code was taken, then modified, from one among the fine ASP

tutorials posted to: Internet: www.asp101.com [March 4, 2008].
[5] M. S. Mahoney. “Software: The self-programming machine,” in

From 0 to 1:An authoritative history of modern computing. A. Ak-

era & F. Nebeker, Eds. New York: Oxford University Press, 2002,

p.95.
[6] J.E. Sammet. Programming languages: History and fundamentals.

Englewood Cliffs, NJ: Prentice-Hall Inc, 1969.
[7] R.L. Wexelblat. History of programming languages. New York:

Academic Press, 1981.
[8] T.J. Bergin & R.G. Gibson. History of programming languages

(HOPL-II). New York; Reading, Mass.: ACM Press; Addison-
Wesley, 1996.

[9] Internet: www.theserverside.com/talks/videos/ShawnBayern/inter-
view.tss?bandwidth=dsl [March 4, 2008].

[10] Internet: www.theserverside.com/talks/videos/ShawnBayern/text/
txt09.html [March 4, 2008].

[11] “Plat_Forms: The web development platform comparison.” Inter-
net: www.plat-forms.org [March 4, 2008].

[12] J. Orwant, Ed. “Best of the Perl Journal: Games, Diversions & Perl
Culture.” Internet: www.oreilly.com/catalog/tpj3/chapter/ch43.pdf

[March 4, 2008].
[13] “Java’s Ultimate Skeptic,” Information Week, p. 62, December

17/24, 2007. This brief article cites Spring architect Rod Johnson as
“Java’s Ultimate Skeptic.” This because he “began to question the

fundamental tenets of the language” and began to construct his own
framework, Spring, to deal with the complexities of J2EE devel-

opment.
[14] T. Grall. "Scripting Languages Ease Development and Administra-

tion." Java Developer's Journal, vol. 10(11), November 2005,
pp.10-12.

Received: January 23, 2008 Revised: March 05, 2008 Accepted: March 06, 2008

