
 The Open Information Systems Journal, 2008, 2, 17-23 17 

 

 1874-1339/08 2008 Bentham Open 

Open Access 

An Information System for Quality Control in Wineries 

M. Urbano Cuadrado, I. Luque Ruiz* and M.A. Gómez-Nieto 

Department of Computing and Numerical Analysis. University of Córdoba. Campus de Rabanales, E-14071 Córdoba, 

Spain 

Abstract: A system for the overall management of the information related to analytical processes and quality control in 

wineries is presented. It enables the integration of semi-automated and automated analytical processes. It has been devel-

oped in Java using the database management system Oracle 9i and can be executed both as a stand-alone program and 

through a standard Internet browser. It has been developed under the evolutionary incremental paradigm in order to take 

into account users’ requirements and using UML object oriented technology to represent the complexity of the processes 

and the large amount of analytical information generated in wine production. Thus, a decision support system, named 

JWisWine, was built for monitoring wine production. 

INTRODUCTION 

 Wine composition and production are both extremely 
complex (Flanzy 2000) [1] (Ribereau-Gayon 2000) [2]. 
Chemical monitoring and control of the overall production 
process is needed to provide knowledge of the quality of the 
raw material (grape), the intermediate and final product.  

 Fig. (1). Shows a detailed activity diagram (Booch 1999) 
[3] of the overall process. Analytical monitoring of the 
enological parameters –in parallel with the process– deter-
mines the start and end of each step, in addition to the qual-
ity achieved. The availability of analytical information at the 
precise time and in the appropriate format is crucial to this 
operation. 

 Advances in the automation of quality control requires: 
a) implementation of a system for management, organiza-
tion, handling and treatment of the information generated 
throughout the production process with the purpose of pro-
viding the technical manager with information enough to 
take a decision (McGrawth JFE 1998) [4] (Muller AIM 
1999) [5]; b) automation of analytical methods using instru-
mentation coupled to the information system (Ilyukhin FC 
2001) [6]. 

 Three common steps are involved in the analysis of the 
chemical parameters: sampling and possible sample treat-
ment; instrument measurement and data collection and proc-
essing of the instruments outputs (Fig. 2). An average of 75 
and 25 samples per day (fermentation and non-fermentation 
periods, respectively, with a number of 5-20 analyses per 
sample) is carried out in the laboratories in which JWisWine 
has been implemented. The amount of data generated as a 
consequence of the variety and number of analyses justifies 
the implementation of an information management system 
with the following purposes: 

 
 
 

*Address correspondence to this author at the University of Cordoba, De-

partment of Computing and Numerical Analysis, Campus de Rabanales, 

Albert Einstein Building, E-14071 Cordoba, Spain; Tel: 0034-9657-212082; 

Fax: 0034-957-218630; E-mails: iluque@uco.es, mangel@uco.es 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Activity diagram of the wine production process. 

 
1) To make possible the appropriate management of his-

torical data. This includes the efficient storage of a huge 
amount of data corresponding to previous harvests, 
which can be used when and as required. 



18    The Open Information Systems Journal, 2008, Volume 2 Cuadrado et al. 

2) To have access to additional information about analyz-
ers, analytical parameters, etc. This aspect endows the 
system with the traceability capacity, which allows, for 
example, correlating the decision about selling a given 
wine batch with the evolution of a given parameter (e.g. 
volatile acidity, ethanol, etc.). 

3) To assess the quality, accuracy and reliability of the in-
formation, which require analytical instruments and 
software components for their controls; thus, providing 
the users with the results in the appropriate format. 

 The work presented here focuses on the management of 
the information. It constitutes a first step to automation of 
the analytical methods in wineries (Urbano IEEE-EFTA 
2003) [7]. Thus, a Decision Support System (DSS), JWis-
Wine, has been built using Java and Oracle 9i as tools, while 
the design of the system was carried out by both object-
oriented and evolutionary incremental paradigms.  

Materials and Methods  

 For the construction of JWisWine both the object-
oriented and the evolutionary incremental software engineer-
ing paradigms have been used. 

Modelling of the System Domain 

 In order to model the domain under study the following 
classes and subclasses have been established: class Parame-
ter, for the parameters to be determined in the wine; subclass 
DatumParameter, which includes the parameters to be de-
termined directly in the sample (e.g. pH measurement); Cal-

culatedParameter, which comprises the parameters which 
are determined in an indirect way through a given algorithm 
for the establishment of a relationship between the Datum-
Parameter and a mathematical equation (e.g. dissolved sol-
ids in wine), as shown in the class diagram (Booch 1999) [3] 
in Fig. (3). 

 Class Unit represents the scale in which a parameter is 
measured (e.g. ethanol concentration expressed in percent-
age, mg mL-1, etc.), together with the class Parameter, –
which represents the property which characterizes the mate-
rial under study (e.g. ethanol)– yield the new class Magni-
tude, which represents a parameter measured in a given unit 
(e.g. volatile acidity measured in absorbance unit). 

 The advantages of using the object-oriented paradigm for 
modeling the problem corresponding with the definition pre-
viously mentioned can be appreciated in the summarized 
Java code definition of the main classes as follows: Eckel 
2002) [8] (Anderson and Stone 1999) [9]:  

/* Definition of the class Parameter * /  

public abstract class Parameter  

extends java.lang.Object  

implements PersistentSQL 

/* It implements the interface PersistentSQL with 

the methods to access to the database */  

/ * Definition of some of the attributes of the 

class * /  

protected java.lang.String alias  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Stages involved in the development of analytical measurements. 



An Information System for Quality Control in Wineries The Open Information Systems Journal, 2008, Volume 2    19 

/* It contains the alias of the parameter, used in 

the formulas */ 

protected Magnitude default  

/* It contains a reference to the default magnitude 

*/ 

protected java.util.Vector magnitudes  

/* It contains all the magnitudes in those a value 

of this parameter can be expressed */ 

protected java.lang.String id_parameter  

/* It contains the name of the parameter */ 

/* Other class attributes */  

cache, connection, debugParameter, 

stateSQL, deletedMagnitudes, ninstances, 

changedname, objcache, idChanged 

/* The constructors definition */ 

Parameter() 

/* Constructor without arguments */ 

Parameter(java.lang.String n, 

java.lang.String alias, Unit u)  

/* It creates a parameter of name 'n', alias' 

alias' and the unit 'u' as their default unit */ 

/* Definition of some of the class methods */ 

Magnitude addMagnitude(Unit u)  

/* It allows that the parameter is expressed in the 

unit 'u', creating a new magnitude associated to 

the parameter */.  

Magnitude[] getMagnitudes()  

/* This method returns an array with all the magni-

tudes defined in the system for this parameter */  

Magnitude getDefaultMagnitude()  

/* It locates and returns the default magnitude 

associated to this parameter */  

void setNormalInterval(Unit u, double min, 

double max)  

/* This method fixes the maximum and minimum values 

for measurements expressed in the magnitude that 

associates the unit 'u' and the parameter */  

void setNormalInterval(Magnitude m, double 

min, double max)  

/* This method overloads the previous ones and 

fixes the normal interval for the magnitude indi-

cated in 'm' */  

void loadSample(Sample s)  

/* This method relates the parameter with the sam-

ple 's' */  

abstract Measurement createMeasurement()  

/* It creates and returns a new measurement */  

boolean isMeasurementNormal(Measurement m)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Class diagram for parameters and samples. 



20    The Open Information Systems Journal, 2008, Volume 2 Cuadrado et al. 

/* This method checks if the indicated value in the 

measurement is between the maximum and minimum val-

ues of the parameter */  

/* Other class methods */  

addToCache, storeParameter, addMagnitude, 

deleteParameter, disablePersistentCache, 

deleteMagnitude, enablePersistentCache, 

equalsParameter, finalizeParameter, ge-

tAlias, getStoreException, getConnection, 

getSQLDeleted, getSQLState, getFromCache, 

getMagnitudes, getIdParameter, getNewSQL, 

getParameter, getParameters, getSQL, hash-

Code, isAliasDefined, isIdDefined, isMagni-

tudeDefined, isPersistentCacheEnabled, re-

build, retrieve, removeFromCache, setAlias, 

setConnection, setSQLState, setDefaulfMag-

nitude, setIdParameter, toString, unload-

Sample, isSampleValidable, isMeasurement-

Normal 

/* Definition of the class DatumParameter * /  

public class DatumParameter  

extends Parameter 

/* It inherits the attributes and methods from the 

class Parameter */  

/* Definition of some of the class methods */ 

Measurement createMeasurement()  

/* This method provides an implementation to the 

superclass method */  

/* Definition of the class CalculatedParameter * /  

public class CalculatedParameter  

extends Parameter 

/* It inherits the attributes and methods from the 

class Parameter */  

/* Definition of the class attributes */ 

protected CalculusFormulae calculusFormulae 

/* It stores a reference to the calculation formu-

lae that evaluates this parameter in their default 

units */ 

/* Definition of some of the class methods */ 

void loadSample(Sample s)  

/* This method overloads the superclass method */  

Measurement createMeasurement()  

/* This method provides an implementation to the 

superclass method */  

CalculusFormulae getCalculusFormulae()  

/* This method returns the calculation formulae 

that allows to evaluate the CalculatedParameter */  

DatumParameter[]getDatumParameter()  

/* This method consults the calculation formulae of 

the CalculatedParameter and returns all the parame-

ters involved in the formulae */ 

/* Definition of the class Magnitude * /  

public abstract class Magnitude  

extends java.lang.Object  

implements PersistentSQL 

/* It implements the interface PersistentSQL with 

the methods to access to the database */  

/* Definition of some of the class attributes */ 

protected TranslationFormulae translation-

formulae  

/* It contains a reference to the conversion formu-

lae that calculates this magnitude */ 

protected java.lang.String name  

/* It contains the name of the magnitude */  

protected Parameter parameter  

/* It contains the parameter associated to the mag-

nitude */ 

protected Unit unit 

/* It contains the unit in which the parameter can 

be expressed */ 

protected double maximumValue  

/* It contains the maximum value for evaluation of 

the associate parameter in the associate units */  

protected double minimumValue 

/* It contains the minimum value for evaluation of 

the associate parameter in the associate units */ 

For Instance: 

• The attribute magnitudes can only be accessed from the 
class Parameter, because only the instances (objects) of 
this class have permission to manage that property. 

• The inheritance property allows that both the Datum-
Parameter and CalculatedParameter classes inherit the 
Parameter class structure. Also, these classes include 
their characteristic attributes and methods; thus encapsu-
lating their definition. 

• Different constructor methods can be defined in order to 
facilitate the system development (see the constructor 
methods for the Parameter class). 

• The functionality of overload's mechanism is illustrated 
in the method createMeasurement of the Parameter 
class, which is redefined in the CalculatedParameter 
and DatumParameter classes to adapt it to their particu-
lar behaviour. 

The information domain can be represented by three main 
blocks, namely:  

1) The samples and the analytical parameters to be moni-
tored. 

2) The analytical measurements performed along the wine 
production process. 

3) The quality assessment and the control of the integrity 
and accuracy of information. 

 Fig. (3). shows, through a class diagram (Booch 1999) 
[3], the modeling for the representation of the samples and 



An Information System for Quality Control in Wineries The Open Information Systems Journal, 2008, Volume 2    21 

analytical parameters to be monitored. In this diagram, Se-
lectedParameter –an association between the classes Sample 
and Parameter– represents the total of the analytical parame-
ters to be monitored in a given sample at a given time. 

 The association between Parameter and Unit classes (Fig. 
3) makes possible to express a given analytical parameter in 
different units through the Magnitude class, as required. In 
this way, the range of normal values of the parameter can be 
expressed in a different manner. 

 Fig. (4). shows some of the classes that represent the in-
formation concerning the analytical measurements during 
wine production. The class Measurement represents the 
measurements with time, which becomes specific for a given 
parameter through DatumMeasurement and Calculated-
Measurement. 

 The model also enables plotting the calibration curves 
with the instrumental data checking by association between 
classes CalibrationCurve and Analyser. In addition, the data 
obtained in the analytical measurements can be transformed 
into chemical values or magnitudes defined for the selected 
parameter by association between the CalibrationCurve and 
CalculatedMeasurement classes. 

 Moreover, the most important classes and associations 
that constitute the third block focused on the control of secu-
rity, integrity and quality of the information (Fig. 3). The 
system takes into account the importance of the users in the 
security and quality of the production process. Class User 
represents different users involved in the information system 
through Technician, Administration and Manager subclasses. 

Modelling of the Function Domain 

 Three types of users are recognized by the system: Tech-
nicians, Managers and Administration users. Technician us-
ers are responsible for the daily analyses in the winery labo-

ratory, namely: general information management (parame-
ters, units, magnitudes and so on); inclusion of new samples 
and parameters to be monitored in these samples; validation 
of results, generation of reports, and the basic functions re-
lated with the management of information generated in the 
wine analysis processes. 

 In addition to all the privileges that correspond to the 
Technician users, Manager users are responsible for the 
management of the daily activities in the laboratory, the 
evaluation of the workload, the testing of both the results and 
the analytical equipment, and the analysis of the results as a 
function of both origin and time. In this way, the Managers 
can develop the reports that support the decisions to be made 
in the winery. This type of user can ask for information of 
the system using non pre-established criteria for searching 
and the system will provide managers with real time re-
sponses in the appropriate format (either tabular or graphi-
cal). For example, the evolution on time of the measure-
ments of the analytical parameters in a sample, comparison 
of these results between samples of the same or different 
origin and year, etc., can be requested. 

 Finally, the functionality assigned to the Administration 
users is similar to the one these users have in the conven-
tional information systems. They are responsible for the 
management of system’s users and the privileges they have. 
Also, they must maintain the security, integrity and privacy 
of the information involved in the system. 

Technology Used in the Development of the System 

 JWisWine is a system developed in Java (Anderson and 
Stone 1999) [9] (Zakhour 2006) [10] under a three-layer 
structure (Fig. 5) as shown in the deployment diagram. The 
information is updated using the DBMS Oracle 9i (Dorsey 
and Hudicka 1999) [11] (Loney and Koch 2002) [12] under 
an object-relational model which implements properly the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Class diagram for measurements. 



22    The Open Information Systems Journal, 2008, Volume 2 Cuadrado et al. 

classes model in the data base server in charge of giving the 
data service to the users. From their terminal, that provides 
the calculation service, the users access to the information 
through the Web server –using Apache (Laurie and Laurie 
2002) [13] for this service– and by both JDBC and SQLJ 
procedures (Morisseau-Leroy 2001) [14]. The Web server 
communicates with the database server, transmits the user 
requirement and gets the results back to him/her, presented 
through a Java interface. 

RESULTS AND DISCUSSION 

Software Developed 

 JWisWine is a DSS (Decision Support System) com-
posed by two tools, the first one is a client application 
through which the users load samples, introduce chemical 
data, generate daily reports, etc. Thus, this tool is in charge 
of managing the data generated daily in the winery. The 
other is a web application through which managers use the 
information extracted from historical data for making some 
decisions. 

User’s Participation 

 The participation of different users –managers and tech-
nicians– in the development of the system has been imple-
mented by the evolutionary incremental paradigm. This al-
lowed the dynamic specification of the system requisites in 
order to take into account the objectives pursued by compa-
nies. 

 The system users have overall control and monitoring of 
the data even the data is acquired automatically or entered 
manually (e.g. if the data from the analyser is collected by 
the computer through a digital interface or the data is manu-

ally introduced by the user, respectively). In addition, each 
type of user has a different access to the system regarding 
the assigned privileges and all the monitored activities in the 
system. 

Evolution of JWisWine Functionality 

The aim of this sub-system was to endow wineries with a 
tool capable to assist the management of the analytical moni-
toring in the following aspects: 

• To establish the appropriate information flow in the 
overall system in order to unify and classify the working 
procedures. 

• To know in real time the working load of the winery as 
the system has previously stored the types of samples 
and the parameters to be analysed in each sample. 

• To visualize, modify, verify and validate the daily re-
sults from any workstation in the Local Area Network. 

• To move –after validation– the results and all data of 
interest from a given sample to the historical repository. 
Warning messages advise users about the existence of 
outliers. 

• To store all data related to instruments usage and techni-
cians activity. 

The aim of this sub-system is to extract information from the 
data stored in the historical repository. The most remarkable 
tasks of this sub-system are as follows: 

• To know the evolution of a given parameter attending to 
a preset searching criteria. The information can be ob-
tained through a standard browser and presented in 
graphs or tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Deployment diagram of the system architecture. 



An Information System for Quality Control in Wineries The Open Information Systems Journal, 2008, Volume 2    23 

• To obtain series of statistical data as either the change or 

standard deviation of any parameter as a function of 

time. 

• To group samples attending to the values of one or more 

parameters, including the possibility of applying PCA 
(principal components analysis). 

• To introduce control samplers in order to extract infor-

mation of the functioning of the analytical equipment –
namely, Sewart graphics–. Traceability of historical data 

with both the equipment and regression data used is also 

available. 

CONCLUSSIONS 

 Firstly, JWisWine is a valuable tool to manage historical 

data. Thus, users are able to extract information structured in 
different manners depending on the requirements. The access 

to the data of interest is achieved in real time, overcoming 

limitations related to manual searches. Wine quality is im-
proved because of the major knowledge of the wine making. 

 On the other hand, daily handling of data is also im-
proved by easy handling of the interactive interfaces. The 

introduction and validation of data, generation of reports and 

other operational tasks are carried out by simple procedures 
and protocols that are friendly to users, who only require a 

short learning period. 

 JWisWine can be modified functionally with few 
changes in the architecture and components of the system 
due to the open, scalable and independent characteristics of 
both the supporting model and the technology used. 

REFERENCES  

[1] C. Flanzy. Enología: Fundamentos Científicos y Tecnológicos 
(Enology: Scientific and Technological Fundamentals). Madrid: 

AMV-Mundi Prensa, 2000. 

[2] P. Ribereau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu. 

Handbook of Enology. Vol. 2: The Chemistry of wine. Stabiliza-
tion and Treatments. Chichester: John Wiley & Sons Ltd. 2000 

[3] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Lan-
guage. User Manual. Amsterdam: Addison-Wesley Longman Inc, 

1999. 
[4] M.J. McGrath, J.F. O'Connor, S. Cummins. “Implementing a proc-

ess control strategy for the food processing industry”. J. Food En-
gineer, vol. 35 (3), pp. 313-321, 1998. 

[5] E. Muller, M. Bassin, J.P. Troyon, P. Nowak. “Implementation of 
rapid result management systems in the metals industry”. Lab. 

Autom. Inform. Manag, vol. 34(1), pp. 31-40 1999. 
[6] S.V. Ilyukhin, T.A. Haley, R.K. Singh. “A survey of automation 

practices in the food industry”. Food Control, vol. 12 (5), pp. 285-
296, 2001. 

[7] M. Urbano, M.D. Luque de Castro, M.A: Gómez-Nieto. 2003. 
“Automation of flow injection methods in the winery industry 

through a computer program based on a multilayer model”. Pro-
ceedings of 9th IEEE International Conference on Emerging Tech-

nologies and Factory Automation, 2003, pp. 530-536. 
[8] B. Eckel, Thinking in Java (Third Edition). New York: Prentice 

Hall, 2003. 
[9] J.C. Anderson and B.L. Stone. Manual de Oracle Jdeveloper (Ora-

cle JDeveloper Manual). Madrid: McGraw-Hill/Oracle Press, 1999. 
[10] S. Zakhour, S. Hommel, J. Royal, I. Rabinovitch, T. Risser, M. 

Hoeber. The Java Tutorial: A Short Course on the Basics, 4th Edi-
tion. New York: Prentice Hall, 2006. 

[11] P. Dorsey and J.R. Hudicka. Oracle8 Database Design Using UML 
Object Modelling. New York: McGraw-Hill Osborne Media, 1999. 

[12] K. Loney and G. Koch. Oracle 9i The Complete Reference. New 
York: Oracle Press, 2002. 

[13] B. Laurie and P. Laurie. Apache: The Definitive Guide (2 edition). 
Sebastopol, USA: O'Reilly; 2002. 

[14] J.N. Morisseau-Leroy, M. Solomon, G. Momplaisir. Oracle9i SQLJ 
Programming. New York: Osborne-Oracle Press, 2001. 

 
 

 
 

 
 

 

 

Received: April 01, 2008 Revised: May 25, 2008 Accepted: May 26, 2008 

 

© Cuadrado et al.; Licensee Bentham Open. 
 

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which 

permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 


