
108 The Open Information Systems Journal, 2009, 3, 108-122

 1874-1339/09 2009 Bentham Open

Open Access

MAXDOR: Mapping XML Document into Relational Database

Ibrahim Dweib*, Ayman Awadi and Joan Lu

School of Computing and Engineering, University of Huddersfield, UK

Abstract: The eXtensible Markup Language (XML) is used for representing and exchanging data through the Internet,

but this technology needs a suitable medium for storing these data. At present, three common technologies can be used to

store and retrieve XML documents, i.e., native XML database, Object oriented Database (OODB) and Relational Data-

base (RDB). This paper describes a general method for mapping XML documents to relational database. The method does

not need a DTD or XML schema. It uses global label approach for identifying each token in XML document. Three label

are added to each token; parent labels, left sibling and right sibling; to facilitate insertion and update process and makes

this cost constant, in contrast of previous approaches that need to relabelled following or descendants tokens. The method

can also be used for data-centric and document-centric documents. Experiments on this method show its ability to main-

tain document structure at a low cost price and building of the original document is straight forward.

Keywords: XML, labelling XML, schema less, relational database.

1. INTRODUCTION

 The World Wide Web (WWW) nowadays is one of the
important media used by most of the human beings in their
daily life activities (i.e.; e-business, e-mail, e-management,
e-learning, and e-library). Many enterprises collaborate with
other enterprises in long-running read-write workflows
through XML-based data exchange technologies such as web
services. A large amount of data is needed to be exchanged
through the web (i.e. XML format) and stored somewhere as
a digital copy.

 Storing the huge amount of web services data is an at-
tractive area of research for the researchers and database
vendors. But the important issue is how to retrieve and query
these data in an efficient manner. At present, three common
technologies can be used to store and retrieve XML docu-
ments, i.e., native XML database [1, 2] Object Oriented Da-
tabase [3] and Relational Database [4-9].

 The most important factor in choosing the target database
is the type of XML documents to be stored, data-centric
(e.g., bank transaction, airlines transactions) or document-
centric (e.g., emails, books, manual).

 The use of XML for data exchanging and representation
and Relational Database Management System (RDBMS) for
storing and querying together represents a sophisticated hy-
brid approach to solving most of the data problems (e.g.,
integrity, multi-user access, retrieving, exchanging, concurr-
ency control, crash recovery, indexing, security, storing
semi-structure data, and reliability). Following this track, the
key challenges in previous studies with fixed shredding is
that there is loss of information from the original XML
documents, the reconstruction of the original XML docu-
ments is very difficult and the size of generated RDB is huge
due to inlining of XML elements on the relational tables.

*Address correspondence to this author at the School of Computing and

Engineering, University of Huddersfield, UK;

E-mail: ibrahim_thweib@yahoo.com

 Existing Mapping techniques from XML-to-relational
can generally be classified into two tracks. The first one is
the structured-centric technique, which depends on the XML
document structure to guide the mapping process [5, 9-13].
The second track is the schema–centric, which makes the use
of schema information such as DTD or XML schema to de-
rive an efficient relational storage for XML documents [4, 7,
8, 14-17].

 In this research we will focus on a method for mapping
XML documents to RDB. The method does not need a DTD
or XML schema to simplify the mapping process since many
applications deal with highly flexible XML documents from
different sources, which make it difficult to define their
structure by a fixed schema or a DTD, or sometimes the
XML schema or DTD is not available at all. Therefore, it is
necessary to look at ways to deal with such XML docu-
ments. In this method, a global label method is used to iden-
tify each token (i.e., element or attribute) in the document.
Three other labels are given to each token, parent label, left
sibling label and right sibling label to facilitate future inser-
tion and relocating of a given token, and make insertion cost
constant for this process since left and right sibling are just
needed to be updated.

 The method aims to overcome the challenges faced due
to fixed shredding, i.e.;

1) No loss of information while shredding.

2) Reconstruction of original XML documents is easier
and faster.

3) Maintaining document structure.

4) Preserve the ordering nature of XML data.

5) Ability to perform semantic search.

 The rest of the paper is organized as follows: section 2
discusses related works, section 3 discusses mapping XML
documents into relational database method, section 4 shows
the system implementation, section 5 presents the experi-

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 109

ment and analysis, section 6 draws the conclusions and fu-
ture works.

2. RELATED WORKS

 There have been a number of different techniques for
storing XML documents in a relational database (RDB).
These techniques can generally be classified into two tracks.
The first one is the structured-centric technique or schema
less-centric approach, which depends on the XML document
structure to lead the mapping process [5, 9-13]. The second
track is the schema–centric approach, which makes use of
schema information such as DTD or XML schema to de-
velop a relational storage schema for XML documents [4, 7,
8, 14-17]. Unfortunately, relational storages constructed
from schema-centric approach need database reconstruction
when there is any change in the XML schema, which is very
expensive. Each approach introduced some solutions for the
mapping process but failed to solve other.

 The aim of mapping XML documents into relational da-
tabase is to utilize relational database power capabilities in
indexes, triggers, data integrity, security, multi-user access,
query optimization by SQL query language, and not just for
backup. Most studies in this track take care of this issue, and
they work to translate users XML queries in XPath expres-
sion [18] or W3C’s recommendation XQuery expression

[19] into SQL queries or statements. Using of XQuery gives
the used method more power since XQuery comprises
XPath, gives access to multi documents and it is recom-
mended by W3C, while XPath is not. Another issue which
mapping XML documents to relational database approaches
should also take care of is the ability to reconstruct the stored
XML document without loss of information and retrieve it in
acceptable time.

 Table 1 shows a summary of some works in mapping of
XML documents into relational database in both tracks (i.e.
schema-less and schema-based), while Table 2 gives a brief
comparison between labelling methods for XML tree (i.e.
document) nodes. A discussion of most related works is
given after that.

 One of the issues of mapping XML to RDB is the loss of
information due to shredding XML documents and inlining
the shreds in RDB tables [4]. To preserve the original XML
document information and to solve the problem of the
document size limitation, a querying approach for XML
documents by dynamic shredding was proposed in [5]. In
this approach, the user's involvement is needed to typically
first "shred" their documents by isolating what they predict
to be meaningful fragments, then store the individual frag-
ments according to some relational schema, and later trans-
late each XML query (expressed in XQuery) to SQL queries

Table 1. A Summary of XML to RDB Related Works

Technique Schema/

Schema Less

No. of

Tables

Cost-

Based

Preserve

Order

Preserve

Constraints

Recursive

Consideration

XML Query

XPath/XQuery

(Shanmugasundaram et al. 1999)
[4]

Schema > 2 yes no yes no XPath

XRel (Yoshikawa et al. 2001)
[10]

Schema less 4 No Yes No no XPath

Dewey (Tatarinov et al. 2002)
[12]

Schema less 4 no Yes No yes XPath

XParent (Jiang et al. 2002) [11] Schema less 4 No Yes Yes no N/A

(Zhang & Tompa, 2004) [5] Schema less > 2 no yes yes no XQuery

ORDPATH (O’Neil et al. 2004)
[6]

Schema less 2 no Yes Yes No XPath

ShreX (Yahia et al. 2004) [15] Schema > 2 No Yes No no Partial XPath

RELAXML (Knudsen et al.
2005) [17]

Schema > 2 Yes yes no no N/A

SPIDER (Fujimoto et al. 2005)
[7]

Schema 4 No Yes yes no XPath

(Atay et al. 2007) [14] Schema > 2 yes yes yes yes XPath

LegoDB & FleXMap (Rama-
nath, 2006) [20]

Schema >2 Yes No No yes XPath

XShreX (Lee et al. 2006) [16] Schema > 2 yes Yes Yes yes XPath

(Soltan and Rahgozar, 2006)
[13]

Schema less 2 no Yes Yes No N/A

Oracle interMedia Text, 2006
[21]

Schema less
/Schema

1 No Yes yes - XPath, XQuery

DB2 Text Extender, 2006 [22] Schema less
/Schema

1 No Yes No - N/A

XTRON (Min et al. 2008) [23] Schema less 6 No Yes Yes No Partial XQuery

110 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

expressed against the shredded documents. The main idea in
this approach is to keep the original document untouched, so
there is no need to reconstruct it again. But not saving the
XML document in the relational database will make it im-
possible to connect with the data already existing in the rela-
tional database. Also there is a need for query translation for
every XQuery query with a support of appropriate structured
text operators.

 XRel approach [10] and XParent approach [11] are used
to store XML documents in RDB. Both approaches used
predefined fixed relational schema to store the XML tree
information. Figs. (1 and 2) shows the relational schemas
used in both respectively. In XRel, elements, attributes and

text are stored in different tables (element, text and attributes
tables), while the fourth table is used as a path table for
document paths, where the path is the sequence of elements
from the root to the element. In XParent, element table stores
each element in the document, and data table stores attributes
and text values. While LabelPath table stores all paths and
the length of the path, and in DataPath table all parent-child
relations are stored.

LabelPath (ID, Len, Path)

DataPath(PID, CID)

Element (PathID, DID, Ordinal)

Data (PathID, DID, Ordinal, Value)

Fig. (2). XParent relational Schema.

 Both approaches, XRel and XParent, assign one code for
each element which increases the number of storage records
in large XML documents, and increases the number of path
joins to process the query.

Table 2. A Summary of XML Labelling Methods

Technique Name Description Advantages Disadvantages

(Li and
Moon, 2001)

[24]

Interval
encoding based

on the number
of words

It identifies any node by 4 attributes, DocID,
StartPos, EndPos and LevelNum. It keeps

space for future insertion

Partially solve dynamic update prob-
lem

Relabelling of many nodes is
needed in case of inserted data

size exceed reserved space

(Tatarinov et
al. 2002)
[12]

Global order
label

Each node is given a number staring from 1,
which identifies the absolute position for a
node in the document

It can help in answering XPath que-
ries such as following and following-
sibling

All nodes of higher label than
inserted node must be relabelled.
It is difficult to answer ancestor-

descendant relationship

(Tatarinov et
al. 2002)
[12]

Local order
label

Each node is given a number that identifies

its relative position among its siblings

Only the following siblings of the
inserted node need to be relabelled

Just Sibling nodes following
inserted node must be relabelled.
Maintain parent-child relation is

very difficult

(Tatarinov et
al. 2002)
[12]

Dewey order
label

It is based on Dewey Decimal Classification.

Each node is given a vector that identifies its

path from the document’s root to the node
itself. So, Each part of its path identifies the

local order of an ancestor node. An example,
1.2.5: node 5 in level 3 whose parent in level 2

is node #2 and it ancestor the document’s root

It is easy to maintain parent-child and
ancestor-descendant relation

All sibling nodes right to the
inserted node and their descendant
must be relabelled

(O’Neil et al.
2004) [6]

ORDPATH It is based on Dewey ordering label, but it
keep a gap between the labels for future inser-
tion, odd integer numbers for initial label, and

even and negative numbers for future insertion

It provides an ability for nodes inser-
tion without a cost to relabel any
existing node. Also it reserved par-

ent-child relation

Many node need to be relabelled
after the reserved space is used
up

It fails to perform semantic search

or path search

(Wu et al.
2004) [25]

Prime number
labelling

Each node is given a prime number, and its
label is the product of self-label from the root
to the node

It is easy to identify ancestor-
descendant relationship depends on
whether their labels are divisible or

not. Also insertion of new node and
giving it prime number is easy

Large space size since each node
label is the product of self-labels
from the root to the node

(Soltan and
Rahgozar,

2006) [13]

Cluster based
order

It is similar to Dewey labelling, but the label is
given to a group of sibling elements instead to

a label for each element, all sibling nodes are
stored in one relational record

It is easy to maintain parent-child and
ancestor-descendant relation. Also it

decreases the # of records in the table

All sibling cluster right to the
inserted cluster and their descen-

dant must be relabelled

(Chung and
Yun, 2008)

[3]

Dynamic
interval-based

labelling

It used the ideal of nested tree structure based
on the interval based labelling

Parent-child and ancestor-descendant
relationship are reserved. It solved

partially insertion and updating issue

Some nodes need to be relabelled
if no space available at the posi-

tion of insertion. Querying proc-
ess becomes high when the label

is too long

Path (PathID, PathExp)

Element (DocId, PathID, start, End, Index, Reindex)

Text (DocID, PathID, Start, End, Value)

Attribute (DocID, PathID, start, End, Value)

Fig. (1). XRel relational Schema.

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 111

 Labelling or encoding of XML tree (i.e. document) con-
tents is a big issue for researchers and database vendors.
Since labelling method plays a main role in facilitating of
retrieving and updating the document contents. This issue
becomes more important in case of storing document’s con-
tents in relational database. Relational database consists of
tables of two dimensions forming rows and columns, where
rows identify object or person and columns identify this ob-
ject attributes (i.e. ID, name). Order of these rows and col-
umns are not essential in relational database, while order is
necessary for document centric documents such as e-book, e-
journal, and email. Many methods and techniques were pro-
posed in to solve this issue. Table 2 gives a brief comparison
between these methods. The comparison shows that they are
a good ideas presented to enhance data query and retrieval
such as [3, 12, 13, 24]. But insertion of new node needs to
relabel many nodes in the documents.

 Global, Local and Dewey labelling were proposed [12]
for labelling XML tree. In Global label, each node is as-
signed a number that represents the node's absolute position
in the document. In this label, dynamic update is very diffi-
cult since all the nodes after the inserted node need to be
relabelled and extracting the parent-child and ancestor-
descendant relationship are also impossible. In Local label,
each node is assigned a number that represents its relative
position among its siblings. In this label, a combination of a
node's position with that of its ancestors as a path vector
identifies the absolute position of the node within the docu-
ment. An update in Local label has less overhead than
Global label because only the following siblings of the new
node need to be renumbered. But extracting the parent-child
and ancestor-descendant relationships is still very difficult.
While in Dewey order label, each node is given a label based
on Dewey Decimal Classification. Each node is given a vec-
tor that identifies its path from the document’s root to the
node itself. So, each part of its path identifies the local order
of an ancestor node. An example, label 1.2.5 means that:
node 5 in level 3 whose parent in level 2 is node #2 and it
ancestor the document’s root. By using this way, it gives an
easy way to extract node labels from its ancestors. But in

case of inserting new node, all sibling nodes right to the in-
serted node and their descendant must be relabelled.

 Pre-order label and node size together are used to identify
the node [24]. It uses 4 attributes to identify any node, Do-
cID, StartPos, EndPos and LevelNum. It keeps space for
future insertion. An arbitrary integer large than the node size
is considered for future insertion. Parent-child and ancestor-
descendant relationship are achieved, and insertion issue is
solved partially. But, many nodes need to be relabelled when
the data size exceeds the reserved space.

 ORDPATH, a hierarchical labelling schema implemented
in Microsoft SQL Server 2005, was introduced [6]. It is used
to label nodes of an XML tree without requiring a schema. It
used two tables to store XML data. Fig. (3) shows ORD-
PATH relational schema.

Node (OrdPathCode, Tag, NodeType, Value, PathID)

Path (PathID, PathExp)

Fig. (3). ORDPATH relational Schema [6].

 In contrast of Dewey Labelling method, which suffers
from the problem of dynamic updating after the insertion of
new node, i.e. many nodes should be relabelled. ORDPATH
can support insertion of new nodes at arbitrary positions in
the XML tree without updating the labels of old nodes since
it only used positive odd integers to be assigned to nodes
during initial loading and reserved even-numbered and nega-
tive integer values for later insertions into the existing tree.
Fig. (8) shows ORDPATH labelling for an XML document.
The advantages of ORDPATH label are no overhead de-
served for updates and it reserves the structure of XML
document. But, it fails to perform semantic search or path
search.

 Prime number labelling [25] is another way for labelling
XML node. Each node in the document is given a prime
number, and its label is the product of self-label from the
root to the node itself. It is easy to identify ancestor-
descendant relationship depends on whether their labels are

Fig. (4). Clustered labels for XML Tree (Soltan and Rahgozar, 2006) [13].

112 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

divisible or not. Also insertion of new node is possible and
giving it prime number is easy. But, large space size is cre-
ated since each node label is the product of self-labels from
the root to the node itself.

 Variable Length Endless Insertable (VLEI Code) [26]
makes use of Dewey order method to construct the node la-
bel as a sequence of bits separated by “.”, or octal number
separated by “9”. For example 1.1.10, its parent is 1.1 and
ancestor 1. VLEI code suppose that 10<1<11<110<11<111.
Or 19397 as a node label, means that 193 is its parent and 1
is its ancestor. Parent-child and ancestor-descendant relation-
ship are reserved by this method. It reduced insertion cost
since relabelling it not needed. Using octal number with “9”
delimiter reduce the space needed for labelling. Using octal
and “9” delimiter instead of “.” as character reduce the space
but increase the time for relabelling since it as Dewey with-
out space between label for future insertion.

 A clustering-based scheme for labelling XML trees was
proposed in [13]. In this scheme, a group of elements is la-
belled instead of a single element. Elements are separated
into various groups, putting all sibling elements in one
group, and assigning one label to this group instead of one
label to each element and stored them in one relational re-
cord. Figs. (4 and 5) show clustered labelling method for an
XML tree and the relational schema for it respectively.

Node (ClusteredCode, Tags, NodeType, Value, PathID)

Path (PathID, PathExp)

Fig. (5). Clustered relational Schema [13].

 A clustering-based scheme will reduce the size of the

database needed to store the XML tree by reducing the num-

ber of records generated from the mapping process, since it
uses one label for a group of elements (a cluster) which is

stored in one relational record, in contrast of other labelling

methods that need a label for each node. Also, it reduces the

number of path joins needed to process the query, and makes
the reconstruction of XML document from RDMB faster.

But this method suffers from the problem of dynamic updat-

ing after the insertion of new node, i.e. many nodes should
be relabelled. And also, it fails to perform semantic search or

path search.

 Dynamic interval-based labelling [3] used the ideal of

nested tree structure based on the interval based labelling as

in [24]. Parent-child and ancestor-descendant relationship are
reserved. It also solved partially insertion and updating issue.

But, still some nodes need to be relabelled if no space avail-

able at the position of insertion. Also, extra space is needed
for identifying each element and querying process becomes

high when the label is too long.

 Schema less Approach [9] used a global label method to
label XML document contents, and used string field to re-

serve document structure. This approach is efficient in re-

constructing and retrieving parts of XML document for small
size document. Since document structure is stored in text

field, and sequential search is done for reconstructing and

retrieving part of the document. But, the performance of this
approach decreases if the size of the document becomes

larger.

3. MAPPING XML DOCUMENTS INTO RELA-
TIONAL DATABASE METHOD

1. The goals of the method applied in this paper are:

2. Utilize the advantages of XML in representing and
exchanging data, and relational database in querying,
security, multi-user access, data integrity.

3. Maintain document structure with no loss of informa-
tion while shredding.

Fig. (6). MAXDOR architecture.

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 113

4. Ease of process, transforming a fresh document
should be an easy task, and updating an already trans-
formed document should also be apple with constant
cost.

5. Ability to reconstruct the XML document from rela-
tional database without loss of information.

6. Ability to perform semantic search.

3.1. MAXDOR Architecture

 Fig. (6) shows MAXDOR system architecture, the sys-
tem consists of four parts. Part one maps XML document
into RDB, part two reconstruct XML document from RDB,
part three translate users XQuery queries into SQL state-
ments, and part four translate SQL statements result into
XML format.

 In part one, the system loads the XML document and
parses it by XML SAX parser shreds the document content
into tokens, and stores these tokens into predefined relational
schema, more details in the relational schema is given in
section 3.3.

 While part two of the system goes through the relational
tables and reconstructs the XML document. It gives the facil-
ity for the user to insert, delete, and update the content of the
document and store it again to the database.

 In part three, the user XQuery queries are translated to
SQL statements and fired against the database engine to get
the results. And these results are translated from relational
table format to XML format hierarchical format and return
back to the user. Full details of MAXDOR system contents
are given in the following sections.

3.2. Theory Guidance

 The main mathematical concepts that are used in this
method are presented in this section.

Definition 1: Composite Relation: If f is a parent-child
relation between X and Y as

f: X Y and g is a parent-child relation between Y and Z as
g: X Y. Then we can say that h: g h is ancestor-
descendant relation between X and Z as

h: X Z, [27]. Fig. (7) shows this relation.

Fig. (7). Composite parent-child relations.

Definition 2: Associative Relation: If f is a parent-child
relation between X and Y as

f: X Y, g is a parent-child relation between Y and Z as g:
X Y, and h: is a parent-child relation between Z and W as
h: Z W. Then i: g f is ancestor-descendant relation be-
tween X and Z, j: h g is ancestor-descendant relation be-
tween Y and W, and K: (h g) f = h (g f) is also an-
cestor relation between X and W, [27]. Fig. (8) shows this
relation.

Definition 3: XML tree is composed of many subtrees of
different levels; it can be defined as the following [14]:

=

=

n

i

iiii
rXAET

1

1),,,(; i=1, 2 … n, represent the levels of

XML tree, 0 represents the root.

Where:

 Ei is a finite set of elements in the level i.

 Ai is a finite set of attributes in the level i.

 Xi is a finite set of texts in the level i.

 ri-1 is the root of the subtree of level i.

Definition 4: A dynamic fragment (shred) df(i) is defined to
be the attributes and texts (child leaves) of the subtree i of
the XML tree plus its root ri-1, as follows:

df(i) = (Ai, Xi, ri-1)

Where:

Ai is a finite set of attributes in the level i.

 Xi is a finite set of texts in the level i.

 ri-1 is the root of the subtree of level i.

Definition 5: The root of the fragment (shred) is the node
which has an out-degree more than one.

3.3. Design Framework

 A Four dimensional labels (FDLS) is used to label the
XML document contents. FDLS uses a global label approach
to give a label to the XML elements and attributes. The label
is unique for each element or attributes. But it is not required
to be in a sequence as in [12, 13]. An initial pre-order trav-
ersing for the XML document is applied. No re-labelling for
XML document tokens (i.e. elements and attributes) are
needed if new element or subtree is added in contrast with
[12, 13, 28]; all labels following the inserted token or tokens
need to be relabelled. In FDLS, each node is assigned four
labels, as follows:

Node (NodeID, left-sibling, parent, right-sibling).

- NodeID is a unique label given to identify each node.

- LS (Left-sibling) label is the node’s preceding sibling
NodeID.

- PID (Parent) label is the parent NodeID.

- RS (Right-sibling) label is the node’s following sibling
NodeID.

 A fixed relational schema consists of two tables. The
"documents" table keeps the required information of the

114 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

XML documents structure, and "tokens" table keeps the de-
tailed contents of the XML documents. The following sub-
sections give more details about the approach.

 SAX (Simple Application Interface for XML) parser will
be used instead of DOM (Document Object Model) to solve
the issue of large XML document size. Since SAX parses
XML document information as a sequence of events in con-
trast of DOM which needs to represent the whole document
as tree in the memory first and then parses it.

 The transformation methodology should satisfy many
requirements; the significance of each requirement is to a
certain level application dependant. In some applications it is
extremely important to maintain order of nodes as in docu-
ment –centric documents while in others as in data-centric
documents, order is insignificant. Among these requirements
that should be met, are the follows:

1. Maintain document structure.

2. Transform a fresh document should be an easy task,
and update an already transformed document should
be done with a constant cost.

3. Ability to reconstruct the XML document from rela-
tional database.

4. Ability to perform semantic search.

 The method is an enhancing for our previous work [9],
but it is different in that it uses left-sibling, right-sibling and
parent labels to reserve the document structure and tokens
order in XML document while the previous one uses a string
field in the document table to reserved the document struc-
ture. This update helps to solve the big text field issue for
large XML document.

3.3.1. FDLS Relational Schema

 A description for the relational schema to be used in
FDLS is given bellow:

1. A master table for documents is needed. It is called
"documents", this table will keep information about
documents themselves, at minimum it will have the
following structure:

 Documents(documentID, documentName, docElement,
totalTokens, schemaInfo)

Additional fields may be added to keep all information about
the document itself such as date created, statistics, types …
etc.

a. DocID is a unique id generated per document to iden-
tify documents.

b. DocName is the external name for XML document.

c. DocElement represents the document's root.

d. totalTokens represents the number of elements and at-
tributes in the document (i.e. number of token). It
helps in future insertion. Since new inserted node is
given new number following the last token number in
the document.

e. schemaInfo keeps the document’s schema informa-
tion if exist for documentation purpose.

2. A second table to store the actual contents for all
documents is also needed. Documents will be shred-
ded into pieces of data that will be called "tokens",
each document element, tag, or property will be con-
sidered a token, the tokens table will the following
structure:

Tokens(documentId, tokenId, LS, Par, Rs,
 tokenLevel, tokenName, tokenValue,
 tokenType).

a. TokenId field is the primary generated id for each to-
ken.

b. DocumentId is the foreign key linking the tokens ta-
ble to the documents table.

c. LS (left-sibling) field keeps the id of the left sibling
token of current node. It is used to preserve the
document's structure and tokens’ order.

d. Par keeps the id of node’s parent. It is used to reserve
parent-child and ancestor descendant relations.

e. RS (Right-sibling) field keeps the id of the right sib-
ling token of current node. It is used to preserve the
document's structure and tokens’ order.

f. tokenLevel reserved the token level in the document
or tree. It is starting from 0 for document element.

g. TokenName is the tag name or the property name as
found in the original XML document.

Fig. (8). Associative ancestor-descendant relations.

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 115

h. TokenValue is the text value of the XML tag prop-
erty.

i. TokenType is used to differentiate between elements
and attributes. (1 = element, 2 = attribute).

 So, the relational schema for this method has two tables
as shown in Fig. (9).

- Documents(documentID, documentName, docElement,
totalTokens, schemaInfo)

- Tokens(documentID, tokenID, LS, Par, RS, tokenLevel,
tokenName, tokenValue, tokenType)

Fig. (9). Relational Schema.

3.3.2. Insertion of New Token or Subtree

 Insertion of new token or subtree in any location or level
in the XML tree (i.e. document) can be done with constant
cost. This insertion follows the following rules:

a. Insertion of a new token between two siblings:

 1) The new token T takes a label tokenID following to
the last token in the document.

 2) RS(T) = RS(PrecT)

 3) LS(T) = RS(FolT)

 4) RS(PrecT) = tokenID

 5) LS(FolT) = tokenID

 6) Par(T) = Par(FolT)= Par(PrecT)

b. Insertion of a new token to the left of a subtree:

 1) The new token T takes a label tokenID following to
the last token in the document.

 2) RS(T) = FolT

 3) LS(T) = Null

 4) LS(FolT) = tokenID

 5) Par(T) = Par(FolT)

c. Insertion of a new token to the right of a subtree:

 1) The new token T takes a label tokenID following to
the last token in the document.

 2) LS(T) = PrecT

 3) RS(T) = Null

 4) RS(PrecT) = tokenID

 5) Par(T) = Par(PrecT)

d. Insertion of a new token as a parent subtree:

 1) The new token T takes a label tokenID following to
the last token in the document.

 2) Par(T) = Par(childT)

 3) Par(childT) = TokenID

 4) RS(T) = LS(T) = Null

3.3.3. Deletion of a Token or Subtree

 Deletion of existing token or subtree in any location or
level in the XML document can be done also with constant
cost. This deletion follows the following rules:

a. Deletion of a token between two siblings:

 1) RS(PrecT) = RS(T)

 2) LS(FolT) = LS(T)

 3) The TotalTokens content will not change (i.e. not
decremented). Since no relabelling for the tokens within the
document will done.

b. Deletion of a token from the left of a subtree:

 1) LS(FolT) = Null.

 2) The TotalTokens will not change (i.e. not decre-
mented). Since no relabelling for the tokens within
the document will done.

c. Deletion of a token from the right of a subtree:

 1) RS(PrecT) = Null.

 2) The TotalTokens will not change (i.e. not decre-
mented). Since no relabelling for the tokens within
the document will done.

d. Deletion of a subtree:

 Deletion of a subtree can be handled as a single token by
one of the previous three cases.

3.3.4. Re-Allocating or Moving Simple or Complex Ele-

ment within XML Document

a. Re-allocating or moving simple element within XML
document can be handled as follows:

 1) Deleting it’s pointers from original location as in
section 4.3.1.2.5.

 2) Inserting this element in its new location as in sec-
tion 4.3.1.2.4. But, there is no need to assign new
TokenID for this element and its follows if it has at-
tributes and childs, since it owned ones before.

b. Re-allocating or moving complex element (i.e. subtree)
within XML document can be handled as moving of sim-
ple element since just the pointers of the subtree root is
managed and there is no change on other contents of the
subtree. That’s mean the cost of moving a complex ele-
ment is the same the cost of moving a simple element
since there are no assignment of new IDs for complex
element contents and no relabeling is needed.

3.3.5. Mapping XML to RDB Algorithm

 The data model used for the mapping algorithm uses the
W3C's Simple Application Program Interface for XML
(SAX parsing); it also uses a variable data structure array to
traverse the XML document by pushing the children of each
node onto stack in order to reserve and identify nodes order
and parent child relationship. SAX fires actions on a lot of
events, i.e. document start, document end, element start,
element end, characters, element attributes, and processing
instruction. These events help in striping XML document
into relational database. Each token; element or attribute; is
given a unique general ID that identify this token. Three
more labels are added to token description, its parent ID, left
sibling ID, and right sibling ID. Left and right sibling IDs are
given to make the time needed for future insertion in the
document constant since these IDs are needed to be updated

116 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

if new node or sub tree is added or relocating in the docu-
ment.

3.3.6. Reconstructing XML Document from RDB Algo-

rithm

 The reconstructing algorithm uses SAX writer for build-
ing XML documents from relational database. SAX writer
makes building of XML document easier since it contains a
lot of properties that can help in creating XML document,
such as documentStart, documentEnd, elementStart, elemen-

tEnd, and attributes properties. Fig. (10) shows base2XML
algorithm with XML document id and relational database
tables as input and XML document as output.

 In Fig. (10), line 4 initiates the document, lines 4 and 5
open and XML file as an output. The loop, from line 10 to
line 50 is used to build the document. Lines 11 to 13 reserve
element contents in an array for future comparison, in order
to write the element’s end tag of element child or sibling.
Lines 14 to 23 checks if the element is not a document ele-

1. base2XML Algorithm

2. Input: DocID.

3. Output: XML Document.

4. saxwrt.startDocument

5. iHandle = FreeFile

6. Open App.Path & "\rebuilt\" & lDocId & ".xml" For Output As iHandle

7. ' Loop and build

8. bEnd = False

9. mRow = 0

10. Do While True

11. pElement(mRow).TokenName = rsTokens.TheDataSource!TokenName

12. pElement(mRow).TokenValue = rsTokens.TheDataSource!TokenValue

13. pElement(mRow).TokenLevel = rsTokens.TheDataSource!TokenLevel

14. If mRow > 0 Then

15. Do While pElement(mRow).TokenLevel <= pElement(mRow - 1)

16. saxwrt.endElement "", "", pElement(mRow - 1).TokenName

17. ' move down

18. pElement(mRow - 1).TokenName = pElement(mRow).TokenName

19. pElement(mRow - 1).TokenValue = pElement(mRow).TokenValue

20. pElement(mRow - 1).TokenLevel = pElement(mRow).TokenLevel

21. mRow = mRow - 1

22. Loop

23. End If

24. ' Checks for element attributes

25. Do While True

26. If Not rsTokens.FindRow("PrevToken = " & rsTokens.TheDataSource!TokenId) Then

27. ' End of document

28. bEnd = True

29. Exit Do

30. End If

31. If rsTokens.TheDataSource!TokenType = TokenTypes.xbTag Then

32. ' Go to outer-Loop and continue the build process

33. Exit Do

34. End If

35. atrib.addAttribute "", "", rsTokens.TheDataSource!TokenName, "", rsTokens.TheDataSource!TokenValue

36. Loop

37. saxwrt.startElement "", "", pElement(mRow).TokenName, atrib

38. saxwrt.characters pElement(mRow).TokenValue ' writing element value

39. ' clear atrib object

40. atrib.Clear

41. mRow = mRow + 1

42. ' If end of doc

43. If bEnd Then

44. Do While mRow > 0 ' close tags for root

45. saxwrt.endElement "", "", pElement(mRow - 1).TokenName

46. mRow = mRow - 1

47. Loop

48. Exit Do

49. End If

50. Loop

51. saxwrt.endDocument

52. Print #iHandle, wrt.output

53. Close #iHandle

Fig. (10). Mapping XML to relational data algorithm.

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 117

ment, and the loop writes all the end tag of sibling element
and its last child. Lines 25 to 36 check for element attributes
if any, and check for end of document to terminate the loop.
Line 37 writes element starting tag and element attributes if
excites. Line 38 writes element value if it has one. Where
line 40 clear attributes of current element. Lines 43 to 49
check if end of document is achieved, end tags of remaining
elements in the array including document element are written
to the document. Line 52 writes the output to the free file on
the disk. While line 53 closes the file.

3.3.7. Theory Implementation on Simple Case Study

 In this subsection, an example is given to illustrate the
application of the mapping method described in Subsection
3.3.3. Consider the XML document in Fig. (11).

<books>
 <book id="11210" >
 <author id="a1" >M. John</author>
 <name>CS 101</name>
 </book>
 <book id="11211">
 <subject>Math</subject >
 <name> Math 102</name>
 </book>
</books>

Fig. (11). XML document.

 Any XML document can be represented as a rooted, la-
belled Tree. Fig. (12) presents an XML tree for the XML
document in Fig. (11). In this method, each node is given a
generated label in pre-order traversal. This label is unique
since it identifies each token in the document. The token
represents an element or attribute.

 After transformation, this document will be represented
by a single record in the documents table with documentId
for example = 1, as in Fig. (13). And the tokens table will be
containing the records for the document contents as shown in
Fig. (14).

4. SYSTEM IMPLEMENTATION

 To test the performance of the proposed technique, a sys-
tem is implemented of four main components, as shown in
Fig. 6. 1) Mapping XML documents into relational database.
2) Constructing XML documents from relational database. 3)
Translating users XQuery queries into SQL statements. 4)
Translating SQL statements result into XML format. Fig.
(15) shows the GUI of MAXDOR. By clicking the new icon
from the tool bar, the user can create new XML document
and assign a name for it. Then, to select the XML document
from a local storage to be mapped to relational database, the
user can click mapping icon from the tools bar as show in
Fig. (16). For reconstruct the desired document from rela-
tional database, user can select the document to be con-
structed from the list of documents and click on reconstruct-
ing icon.

5. EXPERIMENT AND ANALYSIS

 In this section, a comparison of the performance of the
MAXDOR system with other mapping methods [9] will be

performed. The performance metrics to be measured are the
time needed to:

1. Mapping XML document to relational database with
scalability.

2. Reconstruct XML document from relational database.

5.1. Experiment Environment

 An Intel Core2Duo 2GHz CPU, 1GB RAMS and 256MB

shared Cache and running Windows Vista is used for the

experimental tests. Visual Basic 6 is used as software devel-
opment kit with Microsoft Access 2003 as target relational

database. Six XML documents with different sizes are used

in the experiment. The experiment is repeated five times and
the mean value of those times is reported to obtain a realistic

and accurate result. The data is taken from the XML data

repository that are available at the web site of the School of
Computer Science and Engineering, University of Washing-

ton [29].

5.2. Performance Analysis of Various Mapping Methods

5.2.1. Mapping XML Document to Relational Database

 MAXDOR performance is compared with schema less

approach [9], which is named as string field, it uses string
field to reserve document structure. The experiment is done

in two faces as follows:

a. Face 1, scalability test: supplier document from [29]

was taken and its size is update to be 300K, 600KB,

900KB, 1200KB, 1500KB and 1800KB. In this ex-
periment, MAXDOR shows good performance in lin-

ear and scalable manner in comparison with string

field method as document size is increasing. The
mapping performance over different sizes of the same

document is shown in Fig. (17), i.e. documents of the

same complexity and levels.

b. Face 2, effectiveness test: five documents of the same

size (300KB) but have different structure and differ-

ent numbers of elements are taken in this experiment.
Table 3 shows these documents properties and there

mapping and reconstructing time for both methods. In

Fig. (18), MAXDOR has better performance than
String field, but the time needed for mapping process

increases for both methods when the number of ele-

ments becomes larger.

5.2.2. Reconstructing XML Document from Relational Da-

tabase

 Also, the experiment is done in three faces as follows:

a. Face 1, scalability test: the supplier documents

mapped before will be constructed in this experiment
to see that there is no loss of information and scalabil-

ity of MAXDOR in reconstructing XML document

from relational database. Fig. (19) shows that both
methods are closed for small documents sizes and the

gap increase when the document size becomes larger.

MAXDOR gives better results than String field since
the later uses the string field becomes larger for large

documents.

118 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

 Where N refers to Null

Fig. (12). A tree representation for XML document.

Documents

documentId documentName docElement totalTokens

1 Biography Books 10

Fig. (13). Documents table.

Token

Document Id Token Id LS Par Rs Token Level Token Name Token Value Token Type

1 1 N N N 0 books Null 1

1 2 N 1 7 1 book Null 1

1 3 N 2 N 2 id 11210 2

1 4 N 2 6 2 author M. John 1

1 5 N 4 N 3 id a1 2

1 6 4 2 N 2 name CS101 1

1 7 2 1 N 1 book Null 1

1 8 N 7 N 2 id 11211 2

1 9 N 7 10 2 subject Math 1

1 10 9 7 N 2 name Math 102 1

Fig. (14). Tokens table.

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 119

Fig. (15). The GUI of MAXDOR.

Fig. (16). Select XML document to be mapped.

120 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

Table 3. Mapping XML Document to Relational Database, Documents of Equal Size, but of Different Number of Elements (Time

in Seconds)

No of Element String Field MAXDOR

113 0.0308125 0.2491875

8030 38.03191 13.96078

8402 44.095 14.3305

9952 60.02904 17.19003

10891 69.2325 18.70478

Fig. (17). Mapping time for both MAXDOR and String field method over different sizes of the same document.

Fig. (18). Mapping time for both MAXDOR and String field method over documents of same size but of different number of elements.

b. Face 2, effectiveness test: in this face reconstructing
of document-centric document and data-centric docu-
ment are done to see the ability of MAXDOR to with
different XML document types. Fig. (20) show that
MAXDOR has better performance than String field
for larger number of elements since the later one uses
string field to reserve document structure and this
field becomes larger for documents of larger number
of elements.

6. CONCLUSION AND FUTURE RESEARCH

 In this paper, MAXDOR approach is presented. It is a
schema less approach for mapping XML documents to rela-
tional database (i.e. no need for XML schema or DTD).
MAXDOR extracts structural information efficiently and
makes use of it for the mapping process.

 In MAXDOR, the content of XML documents is stripped
in to tokens as elements and element attributes. A global

MAXDOR: Mapping XML Document into Relational Database The Open Information Systems Journal, 2009, Volume 3 121

Fig. (19). Building time for both MAXDOR and String field method over different sizes of the same document.

Fig. (20). Building time for both MAXDOR and String field method over documents of same size but of different number of elements.

label method is used to label this content. Each token has a
unique ID, and another three labels are added to the token
information that are parent ID, left sibling ID and right sib-
ling ID. These labels are used to reserve the document struc-
ture, token order, and parent-child and ancestor-descendant
relationship. Also using of left sibling and right sibling
makes insertion or relocating cost of elements or attributes
constant in MAXOR since the right sibling of previous token
and left sibling follow token are needed to be updated. This
is an advantage for MAXDOR since in other approaches
there is a need to relabel all following token or all ancestors
token.

 An implementation for MAXDOR is conducted and an
intensive experimental study for both real-life and synthetic
data sets. The experimental results show that MAXDOR
gives acceptable results for both mapping and reconstructing
of XML documents to and from relational database when
compared with other methods.

 Currently, two faces of MAXDOR are being imple-
mented that are query and update faces. After that, experi-
ments will be done on these faces to show MAXDOR per-

formance. Also, comparisons with other approaches in the
literature will be done to see MAXDOR performance.

REFERENCES

[1] H. V. Jagadish, S. Al-khalifa, A. Chapman, L. V. S. Lakshmanan,

A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwat-
tana, Y. Wu, and C. Yu, “TIMBER: A Native XML Database,” in

SIGMOD, San Diego, CA, 2003.
[2] A. Fomichev, M. Grinev, and S. Kuznetsov, “Sedna: A Native

XML DBMS,” in SIGMOD, San Diego, CA, 2003.
[3] S. M. Chung, and S. B. Jesurajaiah, “Schemaless XML document

management in object-oriented databases,” in the International
Conference on Information Technology: Coding and Computing,

ITCC 2005, 2005, pp. 261-266.
[4] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,

and J. F. Naughton, “Relational Databases for Querying XML
Documents: Limitations and Opportunities,” in VLDB, 1999, pp.

302-314.
[5] H. Zhang, and F. W. Tompa, “Querying XML Documents by Dy-

namic Shredding,” in DocEng’04, Milwaukee: Wisconsin: USA,
2004.

[6] O. N. Patrick, O. N. Elizabeth, P. Shankar, C. Istvan, S. Gideon,
and W. Nigel, “ORDPATHs: insert-friendly XML node labels,” in

Proc. of the 2004 ACM SIGMOD international conference on
Management of data, ACM: Paris, France 2004.

122 The Open Information Systems Journal, 2009, Volume 3 Dweib et al.

[7] K. Fujimoto, T. Yoshikawa, D. D. Kha, M. Yashikawa, and T.

Amagasa, “A Mapping Scheme of XML Documents into Rela-
tional Databases Using Schema-based Path Identifiers,” in Interna-

tional Workshop on Challenges in Web Information and Integra-
tion, (WIRI'05), 2005, pp. 82-90.

[8] G. Xing, Z. Xia, and D. Ayers, “X2R: a system for managing XML
documents and key constraints using RDBMS,” in Proc. of the 45th

annual southeast regional conference, Winston-Salem, ACM:
North Carolina 2007.

[9] I. Dweib, A. Awadi, S. E. F. Alrahman, and J. Lu, “Schemaless
approach of mapping XML document into Relational Database,” in

Proc. of the 8th IEEE International Conference on Computer and
Information Technology, CIT 2008, Sydney, Australia, 2008, pp.

167-172.
[10] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A

Path-Based Approach to Storage and Retrieval of XML documents
using Relational Databases,” ACM Transactions on Internet Tech-

nology, vol. 1, issue 1, pp. 110-141, 2001.
[11] H. Jiang, H. Lu, W. Wang, and J. X. Yu, “XParent: An Efficient

RDBMS-Based XML Database System,” in ICDE, 2002, pp. 335-
336.

[12] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita, and C. Zhang, “Storing and Querying Ordered XML using

a Relational Database System,” in SIGMOD, 2002, pp. 204-215.
[13] S. Soltan, and M. Rahgozar, “A Clustering-based Scheme for La-

beling XML Trees,” IJCSNS International Journal of Computer
Science and Network Security, vol. 6, pp. 84-89, 2006.

[14] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, “Efficient
schema-based XML-to-Relational data mapping,” Information Sys-

tems, vol. 32, pp. 458-476, 2007.
[15] S. Amer-Yahia, F. Du, and J. Freire, A comprehensive Solution to

the XML-to-Relational Mapping Problem, in WIDM'04 Washing-
ton, DC, USA, 2004.

[16] Q. Lee, S. Bressan, and W. Rahayu, XShreX: Maintaining Integrity
Constraints in the Mapping of XML Schema to Relational, in the

17th International Conference on Database and Expert Systems
Applications (DEXA'06), Krakow, 2006.

[17] S. U. Knudsen, T. B. Pedersen, C. Thomsen, and K. Torp, Re-
laXML: Bidirectional Transfer between Relational and XML Data,

in the 9th International Database Engineering & (IDEAS'05),
2005, pp. 151-162.

[18] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J.

Robie, and J. Siméon, “XML Path Language (XPath) 2.0,” Internet:
http://www.w3.org/TR/xpath20/, 2007 [Feb. 15, 2008].

[19] X. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,
and J. Siméon, “XQuery 1.0: An XML Query Language,” Internet:

http://www.w3.org/TR/2007/REC-xquery-20070123/, 2007 [Feb.
15, 2008].

[20] M. Ramanath, “Schema-based Statistics and Storage for XML,”
Doctor of Philosophy Thesis, Indian Institute Of Science, Banga-

lore, India, 2006.
[21] “Oracle XML DB Developer's Guide 10g,” Internet:

http://download.oracle.com/docs/cd/B19306_01/appdev.102/b1425
9/toc.htm, [Oct. 10, 2006].

[22] “DB2 XML Extender,” Internet: http://www-
306.ibm.com/software/data/db2/extenders/xmlext/index.html [Oct.

10, 2006].
[23] J.-K. Min, C.-H. Lee, and C.-W. Chung, “XTRON: An XML data

management system using relational database,” Information and
Software Technology, vol. 50, pp. 462-479, 2008.

[24] Q. Li, and B. Moon, Indexing and Querying XML Data for Regular
Path Expressions, in Proceedings of the 27th International Confer-

ence on Very Large Data Bases, 2001, pp. 361-370.
[25] X. Wu, M. L. Lee, and W. Hsu, A prime number labeling scheme

for dynamic ordered XML trees, in Proceedings of the 20th Inter-
national Conference on Data Engineering, 2004, pp. 66-78.

[26] K. Kobayashi, L. Wenxin, D. Kobayashi, A. Watanabe, and H.
Yokota, VLEI Code: An Efficient Labeling Method for Handling

XML Documents in an RDB, in Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE 2005, 2005, pp.

386-387.
[27] Jaap van Oosten, “Basic Category Theory,” Department of Mathe-

matics, Utrecht University, The Netherlands. Internet:
www.math.uu.nl/people/jvoosten/syllabi/catsmoeder.pdf Jul. 2002

[Aug. 15, 2008].
[28] Grust Torsten, “Accelerating XPath location steps,” in Proc. of the

2002 ACM SIGMOD international conference on Management of
data, Madison, Wisconsin: ACM, 2002.

[29] U. Washington, Computer Science & Engineering Research.
“XMLData Repository,” Internet:

http://www.cs.washington.edu/research/xmldatasets/, 2002 [Oct.
15, 2008].

Received: February 15, 2009 Revised: May 25, 2009 Accepted: June 03, 2009

© Dweib et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

