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Abstract: In real world document classification, a subset of documents often needs to be chosen for labeling as a training 

set for a machine learner. Random sampling is generally not the most effective approach for choosing documents to be la-

beled. Active learning selects useful examples for labeling to improve the efficiency of learning. We consider two factors 

in order to measure the usefulness of a document for labeling. Such a document should be 1) largely unknown to the cur-

rent learner 2) influential by being close to many other documents. These factors are stated from a document-centric 

viewpoint. A similar analysis can be made from a term-centric viewpoint. It is the purpose of this paper to present this 

term-centric approach to active learning using a naïve Bayes classifier. We study both document-centric and our new 

term-centric active learning methods. We find good performance of the term-centric methods on numerous data sets with 

different characteristics. In addition, a genetic algorithm is employed to compare our results with estimated optimal per-

formance at fixed training set size and our results are between 84% and 99% of the estimated optimum. 
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1. INTRODUCTION 

 Machine learning algorithms for document classification 
require training documents with known class labels. Tradi-
tionally, machine learners take as many labeled documents 
as can be obtained and passively learn from them. However, 
in many cases where documents require classification, avail-
able documents to be labeled are rapidly increasing but the 
labeling cost by human experts is high. Imagine a situation 
where one has a large collection of documents and the need 
to classify them each into one of two classes, but none of the 
documents are labeled as to their class. In this situation, one 
could randomly sample documents one after another and ask 
a human to label them. However, it is possible that as labels 
are given to documents the information being gained could 
be used to guide the process of choosing the next documents 
to be labeled. Active learning is the name given to that class 
of strategies that attempts to use current knowledge to pre-
dict the best choice of unknown documents to label next in 
an attempt to improve the efficiency of learning. Active 
learning starts with a certain number of labeled documents, 
usually small, as the initial training set. It then repeatedly 
cycles through learning from the training set, predicting the 
most informative documents to be labeled, and adding newly 
labeled documents to the training set.  

 The goal of active learning is to obtain the best possible 
classification performance from the fewest possible labeled 
documents. In order to obtain this efficiency, the most useful 
documents must be chosen for the next round of labeling. In 
order to measure the usefulness of a document for labeling 
there are two factors that need to be considered. First, such a 
document should be one about which we are largely igno- 
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rant. If we can already predict the label with high accuracy, 
the work of labeling will be the same, but we will learn little 
from the effort to label the document. Thus we need to be 
able to measure something we term the level of ignorance 
(LIG) of a document’s label. Second, a good candidate 
document for labeling will be one which has influence in the 
sense it will improve knowledge of other documents, i.e., we 
want to label a document which has many other documents 
close to it. Thus we need to measure something we term the 
level of influence (LIF) of a document. Much prior work on 
active learning for document classification focuses on this 
document-centric view, but here we present the term-centric 
view. Many machine learning methods instantiate learning as 
a set of weights for the terms or features, e.g., naïve Bayes, 
support vector machines, and maximum entropy methods. 
The varying weights assigned to terms show that terms are 
not all of the same influence. Also the considerable research 
on the problem of feature selection attests to the importance 
of distinguishing the influence of different terms, see e.g., 
[1-3]. Not only do different terms have different levels of 
influence, but we will have different levels of ignorance 
about terms depending on their occurrence within the labeled 
set of documents at any particular stage in active learning. 
We implement term based methods by assigning terms a 
rating that measures usefulness as a combination estimate 
based on a terms influence and ignorance. We then score 
documents by summing these values for terms in each 
document and the document(s) with the highest score(s) are 
chosen for the next round of labeling. In our study of term-
centric active learning methods in document classification, 
we use the naïve Bayes as a learning method. There exist 
more sophisticated methods that generally outperform naïve 
Bayes. However, the naive Bayes classifier continues to be 
widely used in text classification because of its simplicity 
and efficiency [4-9]. In spite of the popularity of the naïve 
Bayes classifier its optimal active learning approach is not 
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known. These facts motivate us to investigate active learning 
methods for the naïve Bayes classifier. However, the active 
learning methods we developed may not in general apply to 
other learning methods because of the simplicity of naïve 
Bayes. 

 In our experiments, we use the naïve Bayes Binary Inde-
pendence Model (BIM) [9]. In the BIM a document is repre-
sented by a vector of binary attributes indicating presence or 
absence of terms in the document (for details see APPEN-
DIX I). We made this choice because the BIM can be trained 
very rapidly and yet has good performance [10]. The per-
formance of our methods is compared with other known 
methods uncertainty sampling [11, 12] and error reduction 
sampling [13] as well as the estimate of the best perform-
ance obtained using a genetic algorithm (GA). Section 2 re-
views related work in active learning. Section 3 describes 
how we estimate the class probability of unlabeled docu-
ments in our active learning methods. Section 4 explains the 
active learning methods we tested. Section 5 describes the 
data sets used in this paper. Methods of evaluation are ex-
plained in Section 6. Section 7 explains the GA used to esti-
mate optimal performance. Section 8 provides experimental 
results. Section 9 concludes the paper with discussion. 

2. RELATED WORK  

 A number of approaches have been tried in active learn-
ing to select the most informative examples. One of them is 
uncertainty sampling. Lewis and Gale [12] apply uncertainty 
sampling to choose the document most uncertain by the cur-
rent classifier. Such a document is close to the current deci-
sion boundary and may be the most informative to update the 
decision boundary. They applied logistic regression to the 
likelihood ratio of positive and negative examples to esti-
mate class probability for unlabeled examples and select 
uncertain examples based on this probability. The same ap-
proach but using a decision tree classifier has also been tried 
[11]. Some people use uncertainty sampling with support 
vector machines (SVM). Campbell et al. [14] introduce ac-
tive learning with SVM. They select examples decreasing 
the margin between two classes. Tong and Koller [15] also 
study SVM and select examples that bisect version space and 
so reduce classifier uncertainty. Luo et al. [16] apply active 
learning with SVM to multi-class problems by choosing ex-
amples with the smallest difference in probabilities between 
the largest and the runner-up. 

 A related approach is query by committee. Seung et al. 
[17] create a committee of classifiers and choose the next 
example based on maximal disagreement. Freund et al. [18] 
provide a theoretical proof for the result of Seung et al.’s 
query by committee. They show that if query by committee 
yields high information gain, then the prediction error de-
creases rapidly with the number of labeled examples. Dagan 
and Engelson [19] also analyze committee-based sampling 
with probabilistic models and apply it to Hidden Markov 
Models used for part-of-speech tagging. 

 Some researchers select examples that reduce the esti-
mated error. Roy and McCallum [13] select examples that 
directly reduce the estimated error rate instead of reducing 
version space. They estimate the entropy error of each unla- 
 

beled example using its posterior class probability from a 
naïve Bayes classifier and then select an example with the 
largest predicted decrease in error rate. They also utilize 
bagging [20] in order to improve Bayes’ posterior probabil-
ity estimates. A challenge of their approach is computational 
tractability. They use fast naïve Bayes updates and work 
with a small portion of the unlabeled documents to solve this 
problem. Saar-Tsechansky and Provost [21] also choose ex-
amples that reduce the class probability estimation error. 
They apply the bootstrap algorithm [22] to estimate the vari-
ance of class probability for unlabeled examples and try to 
reduce this estimated variance in order to reduce the class 
probability estimation error. 

 Baram et al. [23] observe that there is no single active 
learner to consistently outperform others on multiple data 
sets. Instead of using a single active learner they dynamically 
combine multiple active learners by the multi-armed bandit 
algorithm [24]. In the multi-armed bandit problem, a gam-
bler must choose which of K non-identical slot machines to 
play in a sequence of trials to yield the maximum reward. 
Baram et al. consider an unlabeled training example as a slot 
machine that an active learner chooses at each step. They 
calculate the reward based on the entropy change in the un-
labeled set with or without adding a given example in the 
training set. Then, they try to maximize this reward over all 
steps by updating a selection probability distribution and 
choosing an example with highest probability in each step. 
Similar to Baram et al. Settles and Craven [25] experiment 
with a number of active learning methods for conditional 
random fields and conclude that no one method works best 
in all cases. 

 As related to our term-centric approach, we also mention 
the work of Druck et al. [26] where human annotators label 
features instead of documents to facilitate learning and the 
most informative features for labeling are sought. They use 
latent Dirichlet allocation (LDA) to analyze features into 
topics and choose the features most closely associated with 
topics to show to the human annotators. However, some of 
our data sets are quite large and LDA is not efficient to com-
pute for such sets and we have not experimented with the 
method. Previous work on active learning for document clas-
sification focuses on the document-centric view. In this pa-
per we present term-centric active learning methods for na-
ive Bayes document classification. 

3. ESTIMATION OF CLASS PROBABILITY 

 Some of our active learning methods require estimating 
the class probability of unlabeled documents as accurately as 
possible. This class probability should be estimated via la-
beled training documents. Although the naïve Bayes classi-
fier produces a class probability it is known that this prob-
ability is not accurate. First, the independence assumption is 
violated and second, in our setting we do not have accurate 
estimates of the prior class probabilities. We need a more 
accurate estimation of the class probability.  

 In this paper, we are interested in binary classification—

whether a document belongs to C1 ( 1y = ) or C-1 ( 1y = ). 

Given a document d  with its class y , Bayes’ theorem says  
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P y = 1 d( ) =

P d y = 1( ) P y = 1( )

P d y = 1( ) P y = 1( ) + P d y = 1( ) P y = 1( )
.

        

(1) 

 Thus, ( )1P y d=  is a monotonically increasing function 

of  

( ) ( )( )ln 1 / 1 .score P d y P d y= = =           (2) 

 Equation (2) defines a document d’s score in naïve Bayes 

(see APPENDIX I for more details). This score is expected 

to order documents in the same way probability would, i.e., 

we expect that score satisfies  

( ) ( ) ( 1| ) ( 1| ).i j i jscore d score d P y d P y d= =          (3) 

 Define the set of numbers{ }
1

N

i i=
  

1

1

1,
.

0,

i

i

i

d C

d C
=              (4) 

 Consider the set of pairs ( ){ }
1

( ),
N

i i i
score d

=

. The condition 

(3) suggests that we apply the Pool Adjacent Violators 

(PAV) Algorithm [27-29] to this set of pairs to obtain the 

maximum likelihood non-decreasing probability function 

( )pr score . This probability function of the score  makes the 

observed set of data points most probable subject to condi-

tion (3). It has the interpretation  

( )( ) ( )( )1| .i iP y score d pr score d= =
  

        (5) 

 The better the scoring function the more useful the result 

of applying (5). In fact (3) need not be true to apply the PAV 

Algorithm and obtain (5), but the closer it is to truth, the bet-

ter the result. 

4. ACTIVE LEARNING METHODS 

 We have tested multiple active learning methods. The 

basic routine, which is used commonly in all methods, is 

described in Fig. (1). The details of each method are ex-

plained in the next sections. Section 4.1 describes a general 

concept of how to rank documents for the next labeling re-

quest. Section 4.2 explains previously known uncertainty 

sampling. Section 4.3 summarizes Roy and McCallum’s [13] 

error reduction sampling, and Sections 4.4 to 4.8 explain 

new methods we tested. 

4.1. Ranking for Active Learning 

 To measure the usefulness of a document for labeling we 

consider two factors: level of ignorance (LIG) and level of 

influence (LIF). Both LIG and LIF are important. In fact if 

we already have complete knowledge of a document (LIG = 

0), then it is not useful to choose that document for labeling 

no matter how high its LIF is. Likewise if a document has no 

neighbors and hence no influence (LIF=0), then there is no 

value in learning how to label it no matter how high LIG is. 

Thus each of these factors should have veto power over the 

other and a reasonable way to combine them is as a product. 

We can then compute the ranking score for a document as 

 d d dRanking Score LIG LIF= .          (6) 

 The above discussion concerns ranking a document’s 

desirability for labeling. We call this a document-centric 

view. Since it is only documents that we can select for label-

ing, the document-centric view is natural. However, one of 

the claims we put forward in this work is that it is also useful 

to take a term-centric view. We first consider the value of 

learning each term. We then select the document with the 

most valuable terms. For each term t we attempt to measure 

our level of ignorance (LIGt) about it and its level of influ-

ence (LIFt). Then we compute a rating, rt, for that term  

t t tr LIG LIF= .            (7) 

 The ranking score for a document then becomes  

 d t

t d

Ranking Score r= .           (8) 

 Of course one need not restrict an approach to be strictly 

document-centric or strictly term-centric. Rather it is possi-

ble that good results may come from combining, in some 

manner, ranking scores from (6) and (8). Also, one can use 

only LIG or LIF for ranking scores. The first step in investi-

gating the LIG-LIF approach to ranking documents for active 

learning is to have some methods of measuring LIG and LIF, 

both document-centric and term-centric. Some possible 

measures for each case are described. 

Document-Centric View 

 LIG: There are several approaches to measuring the level 

of ignorance about a document.  

1) Uncertainty: This has generally referred to an esti-

mate of a documents classification as a probability 

that 1y = , i.e., an estimate of ( )1|p y d= . Such an es-

timate can be based on scores produced by the classi-

fier trained on the already labeled documents. For na-

ïve Bayes’ this has been done by Lewis and Gale [12] 

using a logistic regression method and by Roy and 

McCallum [13] using bagging. For convenience the 

measure of uncertainty by any of these methods may 

be taken as ( )1 2 0.5 1|p y d= . For the most uncer-

tain document ( 5.0)|1( == dyp ) this value is 1 and the 

most certain document ( 1)|1( == dyp ) this is 0.  

2) Score Uncertainty: An alternative approach to uncer-

tainty based on probability is to use the score pro-

duced by the classifier directly. Documents are typi-

cally classified based on a threshold value of the 

 

 

 

 

 

 

Fig. (1). Basic routine of active learning methods. 

Start with a small number of labeled C1 and C-1 docs 
Train an initial classifier with those docs 

While willing to label more docs 

     Apply the current classifier to unlabeled docs 
     Rank unlabeled docs based on a given active learning method 

     Select M* top ranked docs 

     Label the selected M docs 
     Train a new classifier with all labeled docs 

*M: number of documents to be labeled for each step. 
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score, thr . The uncertainty can then be measured as 

1 thr score  for some suitable choice of 0> .  

3) Query-by-Committee: Randomly sample a set or 

committee of classifiers from version space [30]. 

Then those documents which the committee members 

are equally divided in predicting either class 1 or 

class -1 are the most uncertain documents. This 

method is a form of probability estimate where the 

fraction of the committee that predicts class 1 be-

comes an estimate of ( )1|p y d=  for that document. In 

this sense it allows an estimate of uncertainty as in 1). 

Variations on this theme have been studied by a num-

ber of investigators [15, 17, 18, 31]. 

 LIF: The level of influence of a document is an estimate 

of how information about that document will carry over to 

other closely related documents.  

1) Density: A density measure has been used by McCal-

lum and Nigam [31] to estimate how many docu-

ments are close to a given document (In this study we 

used a modified density. The details are in APPEN-

DIX II). They used this measure in conjunction with 

the naïve Bayes classifier. For SVMs, Boley and Cao 

[32] use clustering to speed the training and the moti-

vation seems to be similar. 

2) Delta Error Rate: If we use the currently labeled set to 

train the classifier and estimate the class probabilities 

for all the unlabeled documents, then we can estimate 

the entropy of a document 

{ }1, 1

( ) ( | ) log( ( | ))
y

Ent d p y d p y d=           (9) 

and the expected error 

{ }1, 1
( ) 1 max ( | )

y
Err d p y d= .         (10) 

 By taking averages of these measures over the unlabeled 

document set we obtain global estimates of the error in clas-

sifying the unlabeled documents, say, AEnt and AErr. Now 

assume that we select unlabeled document d  to be labeled 

and the label y  is assigned. Then we can retrain the classi-

fier with the additional information concerning d  and re-

compute the numbers AEnt and AErr to obtain numbers we 

will denote by ( , )AEnt y d  and ( , )AErr y d . Then one can 

compute the expected global entropy and error associated 

with labeling d , 

{ }

{ }

( )

1, 1

( )

1, 1

( | ) ( , )

( | ) ( , )

Ent d

y

Err d

y

E p y d AEnt y d

E p y d AErr y d

=

=

.        (11) 

 Roy and McCallum [13] used EEnt(d) and EErr(d) as meas-

ures by which to select documents to be labeled in active 

learning, however, they did not find EErr(d) useful for this 

purpose. We consider these to be measures of influence, 

since they measure the effect on the categorization of the 

unlabeled documents.  

Term-Centric View 

 LIG: For Bayesian weighting, useful knowledge about a 

term is contained in the number of times it occurs in docu-

ments of class 1 and class -1.  

1) Label Frequency: The number of documents contain-

ing the term that have already been labeled. Clearly 

the higher this number, the more we know about the 

term. 

2) Weight Gradient: If we should see one more docu-

ment containing the term t  with a label y  the weight 

wt  of the term would change to ( )wt y . Thus the ab-

solute change in the weight would be  

( ) ( )wt y wt wt y= .         (12) 

 This is a measure of how much we know about the term 

t  because if we have already labeled many documents that 

contain the term ,t  ( )wt y  is typically small, but if we have 

only seen a few such documents it may be large. This meas-

ure has an advantage over 1) in that the ratio of the number 

of documents that we have seen with label 1 and with label  

-1 will influence the weight. When we apply this measure to 

a document d  the result is 

{ }1, 1

( ) ( | ) ( )
y

wt d p y d wt y= .        (13) 

3) Weight Uncertainty: This measure is the average un-

certainty of the documents in the training set that con-

tain the term t . We rate uncertainty as the entropy so 

the measure is 

:

( ) t

d t d

uwt Ent d f= ,         (14) 

where tf  is the frequency of t  in the whole training set and 

the sum is also over this set (for labeled set ( ) 0Ent d = ). 

Since the maximum value of ( )Ent d  is log(2)  and the 

minimum 0, uwt  varies between 0 and log(2)  and provides 

a measure of our knowledge of how t  is distributed over the 

class 1 and class -1 documents.  

 LIF: The influence of a term is intimately connected with 

how widely it is distributed. 

1) Term Frequency: This is the number of documents in 

the training set that contain the term, which we denote 

by tf . 

2) Uncertain Frequency: This is the number of docu-

ments in the unlabeled training set containing the 

term and satisfying some uncertainty condition, 

which we denote by u

tf . Such a condition can be 

stated as among the N  most uncertain documents or 

among those documents whose uncertainty measure is 

above some threshold. Presumably it is in the uncer-

tain documents where the influence of a term is im-

portant.  
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3) Entropic Frequency: This is a smoothed version of 2). 

Instead of either counting or not counting an occur-

rence of a term in a document based on an uncertainty 

criterion applied to the document, we count the occur-

rence with a weight of ( )Ent d . Thus we have 

:

( )
d t d

uft Ent d= .          (15) 

 In our active learning methods, we rank unlabeled docu-

ments based on LIG-LIF concepts and select the top ranked 

document(s) for the next labeling request. The details of us-

ing the LIG-LIF measures in active learning are explained 

under each method. 

4.2. Score Uncertainty (SU) 

 Most uncertainty methods utilize some techniques to 

convert classifier’s scores into class probabilities such as 

logistic regression [12] and bagging [13]. However, if we are 

only concerned with binary classification we can directly 

determine uncertain documents without using this extra 

process of probability estimation. These are documents near 

the threshold for deciding whether documents are in C1 or  

C-1. Instead of estimating class probability we simply choose 

uncertain documents directly using classifier scores. This 

method uses Score Uncertainty, an LIGd. A document d’s 

ranking score is computed by using only LIGd in (6).  

 For binary classification, the most uncertain document is 

the one with ( )1 0.5P y d= = . From (1) this can be obtained 

by  

( )

( )

( )

( )

11
exp ln 1.

1 1

P d yP y

P y P d y

==
=

= =
       (16) 

 Rewriting (16) with the score  of a document from (2) 

gives  

( )

( )

1
ln .

1

P y
thr

P y

=
=

=
         (17) 

 Thus, the most uncertain documents are those with their 

score  (2) closest to the threshold thr . Here )1( =yP  and 

)1( =yP  are obtained from the distribution of the training 

set in each active learning cycle. It is true that we do not 

have very accurate estimates of these prior probabilities, 

especially at the beginning of active learning when the train-

ing set is small. But any bias in these estimates tends to be 

self correcting and we actually find quite good performance 

for this method.  

4.3. Error Reduction (ER) 

 Roy and McCallum’s [13] error reduction method is 

used. We use 0/1 error (EErr(d) in (11)), because entropy error 

(EEnt(d) in (11)), which is used in Roy and McCallum’s paper, 

did not perform as well for us. Also, we used PAV to esti-

mate the class probability of unlabeled documents. Roy and 

McCallum used Bayes’ posterior probability with bagging. 

We choose the document with the greatest expected decrease 

in the error rate, EErr(d) in (11). Thus, this method uses Delta 

Error Rate, an LIFd. A document d’s ranking score is com-

puted by using only LIFd in (6). 

4.4. Term Uncertainty (TU) 

 Traditional uncertainty sampling simply estimates docu-

ment uncertainty based on scores and can be considered an 

LIGd. Instead the term uncertainty method considers both 

LIGt and LIFt. This method focuses on individual terms in a 

document. We obtain a rating for each term and then calcu-

late each document ranking score by summing rating values 

of all terms occurring in that document. 

 Term t’s rating is defined by 

,    occurs in less than 2 labeled documents

,  otherwise                                                 
t

uft t
r

uwt
=       (18) 

where uft  is given by (15) and uwt  is given by (14) in 

which the entropy is obtained using the PAV probability. 

This rating favors terms that are relatively unknown to a 

learner because uft  is larger than uwt . Then, a document d’s 

ranking score is given by (8).  

4.5. Term Gradient-Frequency (TGF) 

 In the Bayes classifier, learning is the result of updating 

term weights during the training process. One possible way 

to measure the value of a useful term is the Weight Gradient, 

( )wt d , an LIGt. Here we add Uncertain Frequency, u

tf , an 

LIFt,, into the calculation. Uncertain frequency is a term fre-

quency but only counted in the uncertain document set,  

A . Then we have 

( ) u

t tr wt d f= .          (19) 

 The uncertain document set, A , is the 1% of the docu-

ments most uncertain in the unlabeled set using the score 

uncertainty method. Equation (8) is applied for ranking the 

documents. This method is related to the expected gradient 

length method proposed by Settles and Craven [25] for ac-

tive learning, but our approach evaluates the effect of adding 

a single labeled document on the trained weights while in 

their setting they can only evaluate the effect on the gradient 

before retraining begins. This may explain the more positive 

outcome in our setting.  

4.6. Density using Score Uncertainty (DS) 

 McCallum and Nigam [31] defined a density measure 

(section 4.1) and employed it in active learning. In APPEN-

DIX II we show how their density measure may be trans-

formed into an LIFt. In order to obtain the best performance 

we combine this with a score based uncertainty measure, an 

LIGd. First, we find the uncertain document set, A , that is 

the N most uncertain documents based on the score uncer-

tainty. Here, N is 10 times the sampling size in active learn-

ing. Then based on A  we define 

1, if 
( )

0, otherwise

d
u d =

A
.         (20) 

 This allows us to set 
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*( | ) ( )
( ) ( )log .

( )
t t

p t d p t
r d u d f

p t

+
=         (21) 

 Here elements of (21) are from (35) and (36) contained in 

APPENDIX II. Then (8) modified for document dependent 

term weights ranks the documents. 

4.7. Selected Term Frequency using Score Uncertainty 
(STFS) 

 This method is related to Section 4.6. This method ig-

nores terms that already appear many times in the labeled 

documents (because if a term occurs many times i.e., La-

beled Frequency is high its LIGt should become low) and 

emphasizes low frequency terms when selecting labeled 

documents. Thus we define 

1,   appears in 100 labeled documents

0,  otherwise                                             
t

t
v =        (22) 

and set 

( ) ( )t t tr d u d v f= .          (23) 

 Here ( )u d  is defined just as in 4.6 and tf  is the term 

frequency, an LIFt, in the whole training set. Equation (8) 

modified for document dependent term weights ranks the 

documents. 

4.8. Term Number (TN) 

 The foregoing term-based methods obtain document 

scores by summing the appropriate term ratings. This tends 

to prefer longer documents. Is this the only reason for their 

success? To answer this question, we tried selecting simply 

the longest documents documents that have the highest 

number of unique terms. This naive approach performed 

very poorly, in some cases worse than random. In order to 

make it competitive we restricted selection to uncertain 

documents as in the previous methods. Thus we write 

( ) ( )tr d u d= .          (24) 

 Here ( )u d  is defined just as in Section 4.6. Equation (8) 

modified for document dependent term weights ranks the 

documents. 

5. DATA SETS 

 We used five sets of natural language documents: RE-

BASE, Newsgroups, MED[heart], MDR and Reuters. From 

these we set up 24 binary classification tasks. One task came 

from REBASE, two from two pairs of Newsgroups, eight 

from MED[heart], three from MDR, and ten from Reuters. 

 All the natural language texts were preprocessed in the 

following manner. Stop words and punctuation are removed, 

but no stemming is performed. We used single words and 

two word phrases from title and body. (We used only single 

words in Reuters.)  

5.1. REBASE  

 REBASE is a database of 3,048 documents from the re-

search literature on restriction enzymes. These documents 

comprise titles, abstracts, and medical subject headings 

(MeSH
®

) [29, 33] and are all contained in MEDLINE
®

. We 

have extracted 100,000 documents from MEDLINE that lie 

outside of REBASE but are most likely to be confused with 

REBASE documents. The classification task is to distinguish 

between REBASE and this similar portion of MEDLINE. 

We randomly sampled two thirds of both REBASE and non-

REBASE for a training set with the remaining one third in 

each case held out for testing.  

5.2. Newsgroups 

 We used the same classification tasks as Roy and McCal-

lum [13]. Four data sets were selected from the 20 News-

groups data set, which is a collection of 20,000 newsgroup 

documents, partitioned evenly across 20 UseNet discussion 

groups. We performed two binary classification tasks. One is 

comp.graphics vs. comp.windows.x and the other is 

comp.sys.ibm.pc.hardware vs. comp.os.ms-windows.misc. 

Each pair has 2000 documents—1000 documents from each 

Newsgroup. In each pair we randomly sampled half of the 

documents from each Newsgroup for training and reserved 

the others for testing. 

5.3. MED[Heart] 

 The Medical Subject Headings (MeSH) are a controlled 

vocabulary produced by the National Library of Medicine 

and used for indexing, cataloging, and searching for bio-

medical and health-related information and documents. Each 

MEDLINE reference is assigned a number of relevant MeSH 

terms. Our classification task was to predict which docu-

ments were assigned a particular MeSH term (class C1) and 

which documents were not assigned that term (class C-1). 

The query “Heart[MeSH]” had 286,225 hits in MEDLINE 

when we created this data set. Denoting those documents as 

MED, we looked at eight different MeSH terms that oc-

curred in MED documents: “Human[MeSH]”, “Ani-

mals[MeSH]”, “Myocardium[MeSH]”, “Female[MeSH]”, 

“Dogs[MeSH]”, “Myocardial Contraction[MeSH]”, 

“Thrombosis[MeSH]” and “Bundle of His[MeSH]”. These 

terms are selected based upon the frequency of the MeSH 

terms in the MEDLINE database. Two MeSH terms are se-

lected for roughly each of 50%, 30%, 10% and 1% occur-

rences in MEDLINE. For each MeSH term x, we perform 

binary classification distinguishing between documents in-

cluding term x ( )MEDx  and documents not including term x 

( )MEDx . The MeSH terms are only used to label docu-

ments. In the actual training and test process MeSH terms 

are not used as features. We randomly sampled two thirds of 

both MEDx  and MEDx  for a training set and reserved the 

remaining one third for a test set.  

5.4. MDR  

 This dataset contains information from the Center for 

Devices and Radiological Health (CDRH) device experience 

reports on devices that may have malfunctioned, caused a 

death, or serious injury (www.fda.gov/cdrh/mdrfile.html). 

These reports were received under both the mandatory 

Medical Device Reporting Program (MDR) from 1984 - 
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1996, and the voluntary reports up to June 1993. The dataset 

contains 620,119 reports with three classes—Malfunction, 

Death, and Serious Injury. We use the field, “event descrip-

tion” as documents. For binary classification we set up three 

classification tasks. We try to distinguish each class against 

the other two. Two thirds of each class is randomly selected 

for the training set and the remaining one third is used for 

testing.  

5.5. Reuters  

 This is the Reuters-21578 data set consisting of Reuters 

newswire articles with 135 overlapping topic labels 

(www.daviddlewis.com/resources/testcollections/reuters215

78/). It is split into 9,603 documents for a training set and 

3,299 documents for a test set by “ModApte” split. The ten 

most popular topics were selected: “earn”, “acq”, “money”, 

“fx,” “crude”, “grain”, “trade”, “interest”, “wheat”, and 

“ship”. We performed binary classification for each topic.  

6. METHODS OF EVALUATION 

 We have tested previously known methods (uncertainty 

and error reduction) as well as our term-centric methods de-

scribed in Section 4. Random sampling was also examined.  

 For each classification problem a portion of the data was 

set aside as a test set, while the remaining data was used as a 

training set. This division was kept fixed and the same for all 

methods. For typical machine learning evaluations test and 

training sets are varied randomly and the results for the dif-

ferent splits averaged. Because we are investigating active 

learning methods all based on the same machine learning 

method (naïve Bayes), we instead randomly vary the starting 

seed documents repeatedly and average the results for the 

different random starting seed documents. For each problem 

ten different random seeds sets were used and the same ran-

dom seed sets were used as starting sets for all active learn-

ing methods.  

 For each active learning trial, we generated an initial 

classifier based on the small number of randomly selected 

documents—five C1 and five C-1 documents for REBASE, 

MeSH, and MDR sets, and three C1 and three C-1 documents 

for Newsgroups and Reuters sets. As mentioned above, all 

methods of active learning were given the same starting sets. 

In large data sets the sampling size for next labeling requests 

was adjusted to reduce the number of times the learner had 

to be trained. For the REBASE data set, initially 10 docu-

ments were selected and labeled for training at each step of 

active learning until there were 5,000 labeled documents. 

Then 100 documents were selected and labeled at each step 

as the labeled set grew from 5,000 to 30,000 documents. 

And if needed, 1,000 documents were selected and labeled at 

each step as the labeled set grew beyond 30,000 documents. 

For the MED[heart] and MDR data sets initially 10 docu-

ments were selected at each step until 10,000 documents 

were labeled. Then, 100 documents were selected at each 

step while the number of labeled documents was between 

10,000 and 40,000 and 1,000 documents were selected at 

each step after there were more than 40,000 labeled docu-

ments. The other data sets used the fixed sampling size of 1.  

 In order to carry out our investigations of active learning 

it was necessary to employ a measure of classifier perform-

ance. In particular we needed to measure the performance 

based on full training (using the whole training set) and to 

compare this with performance from training on the gener-

ally much smaller sets labeled in the active learning process. 

For measurement of the classification performance we used 

average precision [34]. To calculate average precision, 

documents are ordered by score, precisions are calculated for 

each point where a C1 document is found and then these pre-

cision values are averaged.  

 Active learning is the idea that the classifier can select 

informative documents for training and possibly reach a high 

performance using as few labeled documents as possible. As 

a result it is natural to rate active learning methods by the 

number of documents that must be labeled to achieve a given 

level of class prediction on held out test data. To measure the 

performance of active learning methods three different 

evaluations were used: 1) Performance-Level Counts (PN): 

counts the smallest number of labeled documents used by 

active learning methods which produce an average precision 

which is 85% (PN85), 90% (PN90), or 95% (PN95) of the 

average precision obtained by training on the “full training 

set.” All counts are averages of ten trials. Each trial starts 

with different initially labeled training documents which are 

selected randomly. 2) Winner Votes (WV): counts how 

many times each method wins, i.e., how many times each 

method has the smallest average count over each of the three 

performance levels. 3) Ratio-To-Best (RB): we calculated 

values normalized by the smallest counts (best method). In 

each data set and at each performance level and for each of 

the ten trials, every count is divided by the smallest count 

among all methods. Then all values for a given method are 

averaged. The method with a result closest to 1 is the best. 

7. COMPARISON WITH GENETIC ALGORITHM 

 The goal of active learning is to select the most informa-

tive examples from a training set and so possibly obtain the 

maximum performance from that number of labeled training 

examples. However, it is not known which selected exam-

ples are the best for each sampling stage. One could merely 

compare the performance of each sampling stage with the 

classifier trained with all labeled training examples. How-

ever, it is more valuable to compare this performance with 

the best possible performance given the same number of 

examples. The exhaustive search for the best performance is 

computationally impractical. For this reason, we apply a ge-

netic algorithm (GA) [35] to estimate maximum perform-

ance on a given number of documents. Note that GA is not 

used as an alternative of active learning methods. It simply 

estimates the best performance that could be achieved by a 

certain number of labeled training documents. 

 GA is a well known optimization method based on natu-

ral selection. It uses the concept of solution pieces encoded 

by genes and a set of genes, an individual, identifying a pos-

sible solution state. Natural selection takes place in that these 

characteristics are selected through the “survival of the fit-

test” criterion. A set (population) of candidate solution states 
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(individuals) is generated. A fitness function is used to 

evaluate each individual in the population. The individuals 

encoding better solutions have a better chance of being se-

lected for genetic operators such as crossover and mutation. 

These operators create a new population with better indi-

viduals than the previous generation. This process is re-

peated until an acceptable solution is found within specific 

constraints. 

 In our GA process, a gene represents a document and an 

individual represents a set of labeled documents from the 

training set. The fitness value of an individual is the average 

precision on the test set of the naïve Bayes classifier trained 

with that individual (set of documents). We use custom ge-

netic operators in order to make the process suitable to our 

problem. At initialization, each gene in a given individual is 

unique—no duplicated documents are allowed in an individ-

ual. For crossover, we first set aside overlapped genes and 

then perform an ordinary crossover. Then, the overlapped 

part is attached to each child. This avoids duplicated genes. 

In mutation, a gene could be replaced by any gene not cur-

rently in that individual. We bias selection of a mutated 

value (document) by the degree of the uncertainty of the se-

lected document relative to the rest of the documents. The 

more uncertain the document, the more likely it will be se-

lected as the mutated gene. The uncertainty of a gene (docu-

ment) is based on the PAV probability with the naïve Bayes 

classifier trained with the best individual (set of documents) 

of the previous generation.  

 After GA converges, we obtain the best individual (set of 

documents) and the corresponding fitness value (average 

precision). We performed 10 trials of GA and chose the best 

as the optimal performance. In a few cases, we use this result 

as a reference for our active learning achievement.  

8. RESULTS 

 We have studied seven active learning methods. The pre-

existing methods we tested are: Score Uncertainty (SU), and 

Error Reduction (ER). The new methods we investigated are: 

Term Uncertainty (TU), Term Gradient-Frequency (TGF), 

Density using Score Uncertainty (DS), Selected Term Fre-

quency using Score Uncertainty (STFS), and Term Number 

(TN). Random (RAN) sampling was also used to compare 

the performance. ER was not used in MED[heart] and MDR 

sets because of impractical computational time.  

 Tables 1-5 show three performance evaluation measures 

(PN, RB, and WV) for each data set. In the Data column, the 

first number denotes the average precision when using all 

training documents, the second number denotes percentage 

of C1 documents, and the number in the last row denotes the 

number of the total training documents. A bold number de-

notes the smallest Performance-Level Counts among the 

different methods tested. In some case Winner Votes has 

more than one vote in a given performance level because of a 

tie. For the MED[heart] and Reuters data sets, Performance-

Level Counts are shown for only four tasks, but Ratio-To-

Best and Winner Votes reflect all tasks. Performance-Level 

Counts have three levels: PN85, PN90, and PN95. For ex-

ample, PN95 means that active learning obtained 95% of the 

average precision obtained by training on the full training set 

(e.g., in Table 1 (REBASE) 0.8144 is the average precision 

using full training set. Then, 95% level of this will be 0.7737 

(=0.8114*0.95)).  

 In most cases, active learning methods required fewer 

documents than RAN. The difference between RAN and the 

best method becomes larger as the relative frequency of C1 

documents becomes smaller. RAN inevitably selects fewer 

C1 documents in the data sets with low frequency of C1 

documents than the active learning methods. For example, 

“death” (2% C1 documents) required 130,910 documents for 

RAN but 115 documents for TN at PN95 (Table 4), and 

“bundle of his” (1% C1 documents) required 17,907 docu-

ments for RAN but 116 documents for TGF at PN95 (Table 

3). However, the performance gain was not that large in the 

data sets with high frequency of C1 documents. For example 

“human” (55.6% C1 documents) required 128 documents for 

RAN and 95 documents for TU at PN95 (Table 3) and sur-

prisingly “injury” (56% C1 documents) required 314 docu-

ments for RAN at PN95, which was the best (Table 4).  

 For Winner Votes we counted the best method (the 

method with the smallest Performance-Level Counts) for 

each of the three performance levels. However Winner Votes 

simply recognizes the best but ignores the others and so pro-

vides no prediction of the expected amount of work in apply-

ing a method to an arbitrary data set. For this reason, we also 

used Ratio-To-Best, which is normalized by the best method, 

in order to compare each method with the best method for 

each classification task. Ratio-To-Best is the average over 

each task and performance level in a given data set. For ex-

ample, in Table 2 (Newsgroups) for each method we calcu-

Table 1. Active Learning Performance Evaluation (REBASE) 
 

Data Eval. RAN SU ER TGF TU DS STFS TN 

PN85 2973 448 427 220 173 211 177 407 

PN90 5351 800 736 322 305 325 344 716 

Rebase 

0.8144 

3% 
PN95 12720 1781 1372 683 652 837 881 1697 

RB 20.61 3.06 2.67 1.36 1.13 1.37 1.32 2.80 68664 

WV     3    

In the data column, the first value is the average precision using the full training data, the second value is percentage of C1 documents, and the value in the last row is the number of 
training examples. The evaluations are performance-level counts (PNlevel), Ratio-to-Best (RB), and Winner Votes (WV). The other column labels are active learning methods. 
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Table 2. Active Learning Performance Evaluation (Newsgroups) 
 

Data Eval. RAN SU ER TGF TU DS STFS TN 

PN85 101.7 59.9 96.7 24.1 23.1 53.0 45.7 77.4 

PN90 157.2 90.3 158.1 45.6 37.9 91.6 72.7 115.8 

News 1a 

0.9679 

50% 
PN95 265.1 207.7 276.4 86.6 90.8 186.2 137.7 227.4 

PN85 65.0 59.9 68.6 52.8 34.9 41.5 47.3 72.4 

PN90 125.1 127.1 116.2 92.4 64.1 96.1 88.1 134.8 

News 2b 

0.9389 

50% 
PN95 275.1 295.7 247.7 202.8 199.5 257.4 220.4 333.8 

RB 3.16 2.41 3.13 1.41 1.16 2.09 1.79 2.88 1000 

WV    1 5    

acomp.graphics vs. comp.windows.x, bcomp.sys.ibm.pc.hardware vs. comp.os.ms-window.misc. 
 

Table 3. Active Learning Performance Evaluation (MED[heart]) 
 

Data Eval. RAN SU TGF TU DS STFS TN 

PN85 43 40 42 25 58 53 55 

PN90 59 56 53 42 71 66 76 

human 

0.9263 

55.6% 
PN95 128 114 144 95 130 118 123 

PN85 182 136 168 89 159 172 141 

PN90 382 273 310 173 413 423 282 

myocardium 

0.7966 

36.5% 
PN95 1380 826 1135 406 3142 1819 754 

PN85 3619 113 167 250 109 120 134 

PN90 6834 160 211 353 139 145 166 

dogs 

0.7027 

10% 
PN95 22740 225 379 578 191 205 216 

PN85 5705 127 105 121 128 143 121 

PN90 9788 134 111 129 142 160 133 

bundle of his 

0.2144 

1% 
PN95 17907 177 116 145 175 184 147 

RB 71.66 2.46 1.66 1.56 3.55 2.44 2.35 190816 

WV  1 3 15 3  2 

 
Table 4. Active Learning Performance Evaluation (MDR) 
 

Data Eval. RAN SU TGF TU DS STFS TN 

PN85 54 85 109 42 108 137 151 

PN90 99 210 584 109 195 276 269 

injury 

0.9728 

56% 
PN95 314 1441 2811 395 1223 2756 918 

PN85 152 325 733 192 250 313 260 

PN90 367 936 1571 403 953 1536 635 

malfunction 

0.9401 

42% 
PN95 1529 9300 7813 1117 13646 11122 9847 

PN85 18864 137 322 457 164 204 107 

PN90 44140 155 352 536 180 216 111 

death 

0.4070 

2% 
PN95 130910 159 364 622 192 230 115 

RB 228.39 3.28 5.54 2.94 3.66 4.72 3.08 413412 

WV 4   2   3 
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Table 5. Active Learning Performance Evaluation (Reuters) 
 

Data Eval. RAN SU ER TGF TU DS STFS TN 

PN85 41.1 8.9 28.4 8.7 11.7 7.3 8.8 8.2 

PN90 74.1 9.9 33.0 9.9 16.8 9.0 12.2 9.0 

acq 

0.9859 

17.2% 
PN95 137.0 11.0 47.2 16.7 26.5 10.6 15.3 10.3 

PN85 2103.2 16.1 132.4 14.7 17.3 24.6 15.2 13.5 

PN90 2481 17.3 147.8 16.4 18.2 25.4 16.1 13.9 

crude 

0.6757 

4.1% 
PN95 3339.1 20.1 180.2 19.5 22.2 28.4 20.7 16.1 

PN85 1019.4 15.9 111.0 17.3 32.2 28.5 22.6 17.8 

PN90 1847.7 20.4 130.9 21.0 36.0 29.5 23.5 21.1 

interest 

0.457 

3.6% 
PN95 2817.3 24.8 148.1 31.6 52.7 30.5 28.0 25.3 

PN85 2669.2 28.4 303.1 27.9 20.8 40.0 34.6 30.1 

PN90 3370.7 31.8 322.1 41.5 26.5 54.5 41.0 34.0 

ship 

0.7864 

2.1% 
PN95 4680.0 36.8 347.1 45.0 33.9 59.4 48.4 37.2 

RB 146.38 1.45 9.96 1.75 2.02 2.04 1.81 1.52 9603 

WV  14   4 6  7 

 

late Ratio-To-Best for each of six performance levels (three 

for both News 1 and News 2) and then average them. Winner 

Votes and Ratio-To-Best do not present the same picture for 

performance. For example, in Table 4 TU is the best based 

on the Ratio-To-Best measure but RAN has greater Winner 

Votes. We prefer Ratio-To-Best over Winner Votes as an 

overall performance measure. 

 Figs. (2) and (3) compare the active learning performance 
with the estimated best performance (GA results). We chose 
the best out of 10 GA trials as GA results. In active learning 
methods, all results are the average of 10 trials. Fig. (2) 
shows the performance on the Newsgroups data set 
comp.graphics vs. comp.windows.x. The previously pro-
posed methods (SU & ER), RAN, and the best three methods 
(TU, TGF, & STFS) on this data are included. A GA was 
performed on 50, 100, and 200 documents to estimate the 
maximum average precision at those numbers of documents. 
Average precisions from the best GA on 50, 100, and 200 
documents were 0.933, 0.950, and 0.956 respectively. The 
best method in this data set, TU, produced 0.880, 0.921, and 
0.943 respectively. The difference between the best and GA 
was relatively large with only 50 documents but became 
much smaller for 100 and 200 documents. Fig. (3) shows the 
performance on the REBASE data. The previously proposed 
methods (SU & ER), RAN, and the best three methods (TU, 
STFS, & TGF) on this data are included. In this case, GA 
was performed on 100, 300, and 1000 documents to estimate 
the maximum average precision. The best average precisions 
from GA on 100, 300, and 1000 documents were 0.702, 
0.764, and 0.800 respectively. The best method in this data 
set, TU, produced 0.592, 0.733, and 0.782 respectively. Like 
Fig. (2) the difference between the best and GA became 
smaller when using more documents. After a sufficient num-
ber of documents are labeled, TU produces very good per-
formance compared with GA.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Average precision of test set for comp.graphics vs. 

comp.windows.x. Note that the performance order seen in the order 

of the graphs is reflected by the order in the legend. 

 

 Compared to active learning, GA is a radically different 
approach to obtaining the best N documents for representing 
a data set. While GA offers no guarantees as to the quality of 
the optimum obtained, it often gives good solutions to diffi-
cult problems [36]. The fact that a genetic algorithm solution 
is only a modest improvement over the best active learning 
methods suggests these active learning methods are perform-
ing quite well. 

9. DISCUSSION 

 We have introduced a number of term-centric active 
learning methods and examined their performance. Some 
methods were closely related but they were used to show 
how the different measures performed in different data sets. 
We also examined the performance of the uncertainty 
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method [11, 12] and the error reduction methods introduced 
by Roy and McCallum [13]. The motivation for all of these 
methods can be understood based on the LIG-LIF concepts. 
Some methods use only LIG or LIF and some use both of 
them. Some are term-centric and some are document-centric 
and some combine the two approaches. Table 6 shows which 
LIG and LIF are used in each method. In our term-centric 
active learning we are trying to combine LIG and LIF meas-
ures to obtain improved performance. The term-centric 
methods using both LIG and LIF performed well in many 
cases.  

Table 6. LIG and LIF used in Active Learning Methods 
 

Method LIGd LIFd LIGt LIFt 

SU     

TGF     

TU     

DS     

STFS     

TN     

 
 Tables 1-5 show active learning performance for the 
methods we tested. As can be seen there was no one best 
method for all data sets even though we can obtain the over-
all best by averaging. Baram et al. [23] also observed that 
there was no single active learning method to consistently 
outperform others on multiple data sets. They noted that 
some data favored particular methods. In this experiment we 
performed 24 classification tasks from five different data 
sets. It is clear that different data sets have different charac-
teristic and that different measures (LIG & LIF) differen-
tially achieve best performance. However most of the best 
performances in active learning came from our term-centric 
methods. 

 Table 7 shows the performance of averaged ratio-to-best 
over all data sets. TU was the best and TGF was the second 
best. Both are term-centric methods. We further examined 
which active learning methods might be most effective on 
different data sets. This relates to the balance between the 
classes C1 and C-1. Call a problem balanced if at least 30% of 
the documents fall into the C1 class (note: never more than 
56% fall into C1). Otherwise call the problem unbalanced. 
Among the 24 problems there are 15 in the unbalanced cate-
gory and 9 in the balanced group. We computed performance 
as averaged ratio-to-best over the two classes separately for 
the different methods. The results are contained in Table 8. 
For the unbalanced problems TGF gave the best results, TN 
was second best, and SU third best. We performed signifi-
cance testing with the Bootstrap Shift Test [37] with a sig-
nificance level 0.05. The result showed that TGF and TN are 
not significantly different, but are both significantly better 
than SU. In the balanced group TU was best and was signifi-
cantly better than the second best, RAN.  

Table 7. Ratio-to-Best Averaged Over all Data Sets 
 

Method All  

RAN 114.55 

SU 2.16 

TGF 2.15 

TU 1.87 

DS 2.72 

STFS 2.36 

TN 2.16 

 
Table 8. Ratio-to-Best Averaged Over Unbalanced (C1  

< 30%) and Balanced (C1  30%) Data Sets 
 

Method Unbalanced Balanced 

RAN 181.93 2.24 

SU 2.04 2.36 

TGF 1.85 2.65 

TU 2.31 1.15 

DS 2.56 2.99 

STFS 2.06 2.86 

TN 1.94 2.53 

 
 The PAV algorithm was used to estimate the class prob-
ability of unlabeled documents both for the previously 
known methods we tested as well as the new methods we 
introduced. The PAV algorithm is a technique for converting 
a raw score into a probability. It is especially appropriate 
when an increase in score generally means an increase in the 
probability (in this case the probability of class 1y = ). The 
advantages of the PAV algorithm are its simplicity (no pa-
rameters) and its speed (time complexity of order log( )n n  
for n  data points). One of the consequences of using the 
PAV algorithm is that our results may differ from the results 
obtained from other methods of estimating class probability. 
In our implementation the error reduction approach [13] did 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Average precision of test set for REBASE. Note that the 

performance order seen in the order of the graphs is reflected by the 

order in the legend. 
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not perform well. In seeking to understand this we note first 
that the error reduction approach consists of two methods 
which Roy and McCallum call log loss (entropy based) and 
0/1 loss (error based). They found good results using log 
loss, but results no better than random using 0/1 loss. They 
had no explanation for this discrepancy. With our approach 
at estimating class probabilities with PAV we had the oppo-
site experience in that log loss gave worse results than 0/1 
loss. However, with our approach neither method worked 
well. Our hypothesis is that a greedy approach to error reduc-
tion can easily get trapped in a local optimum. We believe 
this may explain our poor results with this approach. Be-
cause of the difficulty of comparing results across different 
methods of data preparation and different algorithm imple-
mentations, we included the genetic algorithm results. They 
allow us to conclude that our best methods are close to opti-
mal.  

 We have examined our methods on a relatively large 
number of data sets with different characteristics—24 classi-
fication tasks from medical areas, computer related news-
groups, Reuters, and device reports. Our term-centric active 
learning methods showed best performance in many cases. 
In both balanced and unbalanced and overall problem types, 
the best method was term-centric. However, significant work 
remains to be done in understanding the characteristics of 
different data sets and how these influence active learning. 
Theoretical work has produced interesting results on active 
learning, but there remains a large gap between theoretical 
limits and what is observed in practice [38]. Our study is 
largely empirical but based on good justification in terms of 
a general approach using the LIG-LIF concepts. It opens up 
some new directions for thought and investigations in an 
area which is not currently well understood. 

APPENDIX I. DETAILS OF THE NAÏVE BAYES BI-
NARY INDEPENDENCE MODEL (BIM) 

 In the BIM, a document is a binary vector over the space 

of terms. Given a vocabulary T , there is a term or (an attrib-

ute) kt , kt T  corresponding to each dimension of the vec-

tor space. A document d may be written in vector form 

{ }
1

T

d dk k
x x

=
=  where the value dkx  for the document d is either 

1 or 0, indicating whether the term kt  occurs in the docu-

ment or not. With such a document representation, we make 

the naïve Bayes assumption that the probability of each term 

occurring in a document is independent of the occurrence of 

other terms in the same document. Then, the probability of a 

document given its class, required in (2), is simply the prod-

uct of the probability of the attribute values over all terms in 

vocabulary T : 

( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1

1

1 1 1 1 1

1 1 1 1 1 .

T

dk k dk k

k

T

dk k dk k

k

P d y x P t y x P t y

P d y x P t y x P t y

=

=

= = = + =

= = = + =

 

 (25)

 

 Let N  be the total number of documents in the training 

set. We define several subsets of these N  documents: kn  is 

the number of documents containing term kt ; sn  is the num-

ber of 1C  documents (documents with 1y = ); skn  is the 

number of 1C  documents containing term kt . Then we may 

estimate the probability of the term kt  in each class with: 

( )

( )

1

1

sk

k k

s

k sk

k k

s

n
p P t y

n

n n
q P t y

N n

= = =

= = =

        

(26) 

 Then, (2) is given explicitly as the score of document d, 

( )

( )

1
ln

1
k

k

t d

P d y
score w C

P d y

=
= = +

=
       (27) 

where the term weight kw  and the constant C  are given by 

( )

( )

1 1
ln ,  ln .

1 1
k

k k k
k

t Tk k k

p q p
w C

q p q
= =        (28) 

 In (28) if kp  and kq  are 0 or 1, we cannot properly de-

fine the term weight. To avoid this problem we use the fol-

lowing scheme for obtaining kp  and kq  in (26). If skn  is the 

same value as the minimum of sn  and kn , then 1kp =  or 

0kq = . To avoid this we subtract 1 from skn  if ( )skE n  is less 

than 1skn , otherwise we disregard the term kt . If 0skn =  

or sk k sn n n N= + , then 0kp =  or 1kq = . To avoid this we 

add 1 to skn  if ( )skE n  is greater than 1skn + , otherwise we 

disregard the term kt . Here, ( )skE n  is the expected value of 

skn  and equals /k sn n N . 

APPENDIX II. DOCUMENT DENSITY MEASURE 

 We first describe the density measure for a document d  

in a database of documents D  as proposed by McCallum 

and Nigam [31]. For any term t  let ( | )p t d  be the fraction 

of the tokens in d  that are t . Likewise let ( )p t  be the mar-

ginal distribution over terms, i.e., ( )p t  is the fraction of all 

the tokens in all the documents in D  that are t . Following 

methods proposed in Pereira et al. [39], McCallum and Ni-

gam [31] use the Kullback-Leibler (KL) divergence of two 

distributions to define the distance between individual 

documents 

( ( | )|| ( | ) (1 ) ( ))( , ) h iD p t d p t d p t

i hY d d e +
=         (29) 

where the KL divergence required here is given by 

( ( | ) || ( | ) (1 ) ( ))

( | )
( | ) log

( | ) (1 ) ( )

h i

h
ht V

i

D p t d p t d p t

p t d
p t d

p t d p t

+

=
+

       (30) 

and V  denotes the vocabulary of the database. Here in (29)

 is a positive constant which McCallum and Nigam take to 

be 3. Also  is taken as 0.5 and is used to smooth the 

( | )ip t d  distribution with ( )p t  to avoid singularities in the 
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divergence formula. They go on to define the density at the 

document id  by 

1
ln( ( , ))

( ) .
i hd Dh

Y d d
D

iZ d e=          (31) 

 Here we want to show how we modify formula (31) for 

our application. Since we only use the density to rank docu-

ments we begin by observing that the same ranking is pro-

duced by the exponent on the right in (31) and that a positive 

constant factor also has no influence on the ranking. Thus for 

ranking purposes we may use 

1( ) ln( ( , )).
h

i i hd D
Z d Y d d=          (32) 

 If we substitute from equation (29) into (32) the log and 

exponential functions cancel each other and the positive con-

stant  may be dropped yielding 

2 ( ) ( ( | ) || ( | ) (1 ) ( ))

( | )
( | ) log

( | ) (1 ) ( )

h

h

i h id D

h
hd D t V

i

Z d D p t d p t d p t

p t d
p t d

p t d p t

= +

=
+

        

(33)

 

 For efficiency in performing the calculation we observe 

that 2 ( )iZ d  can be rewritten as 

2

( | )
( ) ( | ) log

(1 ) ( )

( | ) (1 ) ( )
             ( | ) log .

(1 ) ( )

h

h i

h
i hd D t V

i
hd D t d

p t d
Z d p t d

p t

p t d p t
p t d

p t

=

+
+

      (34) 

 Finally we see that the first term on the right side in 

equation (34) is a constant and cannot affect the ranking. 

Thus we may further simplify to 

3

*

( | ) ( )
( ) ( | ) log

( )

( | ) ( )
log ( | )

( )

( | ) ( )
log .

( )

h i

i h

i

i
i hd D t d

i
ht d d D

i
tt d

p t d p t
Z d p t d

p t

p t d p t
p t d

p t

p t d p t
f

p t

+
=

+
=

+
=

      (35) 

 We have dropped  because it equals 0.5 and have in-

troduced the symbol  

* ( | )
h

t hd D
f p t d=          (36) 

which may be understood as a modified term frequency in 

which each occurrence is weighted by the probability of the 

term in that document. For ranking purposes, 3( )iZ d  must 

yield the same result as the original density measure ( )iZ d  

of McCallum and Nigam. Moreover, 3( )iZ d  can be seen as a 

score coming from a sum of ratings for each term in that 

document. The term ratings are each a product of a log term 

which is very closely related to the common inverse docu-

ment frequency (IDF) weight used in the information re-

trieval literature [40, 41] and the modified term frequency 

given by (36). A simple sum of the modified frequencies 

would be closely related to the sum of frequencies that we 

use as an tLIF  measure, but the IDF weight works in the 

opposite direction giving more importance to less frequent 

terms. Thus 3( )iZ d  is intermediate between our frequency 

rating of terms and the IDF measure of term influence. As 

such it makes an interesting comparison with the frequency 

based tLIF . 
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