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Abstract: Shift registers are at the heart of cryptography and error-correction. In cryptography they are the main tool for 

generating long pseudorandom binary sequences which can be used as keys for two communicating parties in symmetric 

cryptography. Practically all military cryptography makes use of them. Shift registers are also fundamental in signal 

analysis and frequency hopping, most recently in connection with European GPS codes.  

The subject has a chequered history. One of the pioneers was a famous Hollywood star who, in her day, was known as the 

worlds most beautiful woman and wrote one of the earliest patents on frequency hopping which was developed by the US 

military. We speak of the Austrian-born Hedwig Maria Eva Kiesler, otherwise known as Hedy Lamarr. The development 

of spread spectrum technology was first proposed by Lamarr using frequency hopping. She obtained a patent after coming 

to Hollywood in 1942 and turned it over to the US government as a contribution to the war effort. Shortly after the patent 

expired in 1959 Sylvania digitize the synchronization to supply secure communication during the Cuban missile crisis.  

This paper presents a user-friendly, self-contained and comprehensive discussion of the theory of shift registers. 

Moreover, we provide several examples (and counterexamples) in support of the theory. In the non-linear case we study 

the relationship between truth tables and de Bruijn sequences. In the linear case, we use a matrix-theoretic approach to 

describe the situations when the output is periodic and when it is not periodic. Section three describes additional 

periodicity properties, using the Cayley-Hamilton theorem and the theory of error-correcting codes. 

In Section six, we prove a fundamental result to the effect that, for non-singular shift registers of length k, the entire 

output is uniquely determined by any 2k consecutive bits of the output sequence. Although the result is part of the folk 

lore, it is certainly not well understood and there appears to be a lack of any rigorous proof in the literature. An additional 

bonus of our proof here is that it can be adapted to provide a new algorithm for demonstrating a little-known, and 

remarkable fact. Namely, we provide the most general method for constructing two quite different shift registers of the 

same length that produce identical output sequences! A new result concerning such shift registers is also sketched in 

Section six.  
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1. PRELIMINARIES  

 We may choose to work over any finite field F. Very 
often, the main case of interest occurs when F is the binary 
field. In any event, we begin with the concept of a 
feedback shift register over F.  

 Let us be given k registers in a row named from left to 
right  

Rk 1, Rk 2, ..., R1, R0. 

 Denote the entry in Ri by xi  F, with 0  i  k  1. Of 
course, when F is binary, each of them is either 0 or 1. In 
the binary case the registers are simply bit-storage 
registers. An electronic clock controls proceedings. At the 
first clock pulse the following happens.  
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 Each entry xi is pushed over one unit to the right to now 
occupy the register Ri 1, for 0  i  k  1. The right most 
element xo gets fed into the Output Sequence. Thus, we have a 
vacancy in the left-most register Rk 1. In this register is placed 
the entry  

xn = f (xk 1, xk 2, xk 3,...,x1, x0) 

where f is a function of the previous inputs xo, x1, ..., xk 1. 
Thus the output sequence, from left to right, will be the 
sequence {x0, x1, x2,...,xk 1, f...}. 

 This sequence of elements in the registers represents the 
current state of the system. The previous state was the 
sequence {xk 1, xk 2,...,x1, x0}. The current state is given by the 
sequence {f, xk 1, xk 2,..., x2, x1}. At each clock pulse we get a 
new state and a new element for the output sequence. Since 
there are k registers, we say it has length k.  

 If the function f is linear, with constant term 0, we say that 
the feedback shift register  is a linear feedback shift register 
(LFSR). In this case, we write  

f (xo, x1, x2,..., xk 2, xk 1)=c0x0+c1x1+···+ck 2xk 2+ck 1xk 1  (1.1)  
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Then we can also put  

xk = c0x0+c1x1 + ··· + ck 2xk 2 + ck 1xk 1  (1.2)  

 Algebraically we can describe  as a linear recurrence 
where the recurrence relation is given by Equation (1.2) 
above. The (fixed) coefficients c0,c1,c2,...,ck 1 are called the 
recurrence or tap coefficients of . Thus the recurrence 
above can also be written as  

xk+i = c0xi  + c1x1+i + c2x2+i ...  (1.3)  

 Initially, in this paper, we will mainly be discussing the 
linear case. The following examples over the binary field 
will be useful in the sequel.  

Example 1.1. Let k = 3, with the initial state given by {x2, 
x1, x0} = {1,1,0}. Suppose the recurrence is given by the 
equation  

x3 = x1 + x2. 

 Then the successive sequence of states is as follows:  

110,011,101,110,... 

The sequence of states has fundamental period 3 (see 
definitions in section 2) as it repeats after 2 clock pulses. 
The output sequence is {0,1,1,0,1,1,...}. This sequence 
also has fundamental period 3.  

Example 1.2. Again, let k = 3, with initial state 001 and 
the same recurrence as above. The sequence of states is as 
follows: 001,000,000. The output sequence is {1,0,0,...}. 
Here we have an instance of an output sequence that does 
not repeat as the leftmost 1 never materializes. In other 
words, the initial state is never repeated.  

Example 1.3. Let k = 3 with initial state 100 and the 
same recurrence as above. The sequence of states is given 
as follows: 100,110,011,101,110 .... This sequence is not 
periodic as the initial state is never repeated. It does form 
a repeating sequence if we ignore the first state. The output 
sequence is  

{0,0,1,1,0,1,1,...}. 

Example 1.4. Let k = 3, with initial state 011 and 
recurrence given by the equation x3 = x2. The sequence of 
states is 011,001,000,.... The output is {1,1,0,0,0,...} 
reminiscent of Example 1.2; although the initial states are 
different. Both terminate with an endless stream of zeros; 
that is, both go to zero.  

Example 1.5. Again, let k = 3, with initial state {100} 
and recurrence defined by the equation x3 = x0 + x1. The 
sequence of states is as follows:  

{100,010,101,110,111,011,001,100} ... 

The output sequence is {0,0,1,0,1,1,1,...}. The sequence of 
states has fundamental period 7 as has the output 
sequence. The total number of possible states is 2

3 
= 8 and 

this number includes the zero state. So there are seven 
possible non-zero states each of which occurs as a state in 
the above LFSR.  

2. A MATRIX APPROACH  

 Let us examine the shift register , with recurrence 
given by Equation  

(1.2) above and initial state u = (xk 1, xk 2,...,x1, x0).  

 Let v = (c0x0 + ··· + ck 1xk 1,...,x2, x1)  

be the state following the clock pulse and  

   

A =

c
k 1

c
k 2

c
2

c
0

1 0 0 0

0 0 1 0

 (2.1) 

be the transition matrix.  

 Then we can write Equation (1.2) in matrix form as 
follows.  

Au
t 
= v

t  
(2.2)  

 We note that the determinant of A equals c0. It is equal to 
plus or minus c0. If c0 = 0 we say that  is singular. If c0  0, 
we say that  is non-singular. The structure of  is determined 
in large part by whether or not  is singular.  

 Let the output of  be given by the sequence {x0, x1,...,  
xk 1, xk,...}. We say that this output sequence s has period t for 
t some positive integer, provided that xi+t = xi, with i =0, 1, 
2,.... If t0 is the smallest integer for which this holds then t0 is 
called the fundamental period of the output sequence. It is 
easy to show that t0 must divide t. Similarly, if s0,s1,s2,... are 
the successive states of  it follows that the state sequence will 
have the same period t and fundamental period t0 as the output 
sequence. Our first fundamental result is as follows.  

Theorem 2.1.  

1.  If  is non-singular then, for every initial state, the 
output sequence is periodic.  

2.  If  is singular then the output sequence may or may 
not be periodic.  

Proof. Denote the initial state by u. Assume that the transition 
matrix A is a non-singular matrix. Then also A

i  
is non-singular 

for i = 0, 1.... Our result is clear if u is the zero vector, so 
assume this is not the case. The total number of non-zero 
vectors of length k over F is q

k 
 1, where q is the cardinality 

of F. Thus the number of states of  is at most q
k 

. It follows 
that, given u, the vectors in the sequence u, Au,..., A

i
u,...  

cannot all be distinct. Suppose then that A
s
u = A

s+t
u, with 0  s 

< s + t  q
k+1

. Since A is non-singular, A
s 

exists so that u = 
A

t
u. Then, for any m  0 we get A

t
A

m
u = A

m
A

t
u = A

m
u. 

Therefore since each state is of the form A
m
u, we see that the 

state sequence is periodic of period t and part 1 is proved. Part 
2 is easily seen by perusing the examples in Section 1. 

Remark 2.1. As mentioned in the proof of Theorem 2.1, the 
maximum number of non-zero states of  is q

k 
 1. If  has 

period q
k 

 1 then we say that  has maximum period. Such 
sequences do occur and are extensively used in applications. 
They have very desirable randomness properties. For example, 
in the binary case, let us define a block of length j to be a 
sequence of the form 0111 ... 10; i.e. an all ones sequence of 
length j with zeros at either end. Similarly, a gap of length j is 
defined by interchanging 0 and 1. Then it can be shown that, 
when 1  j  k  2, the total number of blocks and gaps of 
length j is the same, namely 2

k j 2
.  
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Theorem 2.2. Let  be a given LFSR of length k, and 
transition matrix A. If  is non-singular then the entire 
output sequence of  can be determined from any k 
consecutive elements of the output. This is not necessarily 
true if   is singular.  

Proof. We think of the given set of k consecutive elements 
as forming a state s. Then, whether or not  is nonsingular, 
the entire subsequent output of  is determined. If  is non-
singular we can go back, using the inverse of A, to get the 
previous elements of the output (or we can get them by 
going forward since the output of  is periodic). However, 
if  is singular, then we may not be able to go back. As an 
illustration, consider Example 1.4. Then modify it by using 
(010) as the initial state. The two state sequences agree 
from the second state onwards, yet the outputs of the two 
shift registers are not the same. 

3. A GENERAL STRUCTURE THEOREM  

 For convenience sake, we assume henceforth that F has 
characteristic 2. In the earlier sections we have seen how 
the properties of the output sequence of a shift register 
show much variation and depend very much on the initial 
state. It appears that not much may be said in general. 
Remarkably, there is a general result, independent of the 
initial state, which succinctly describes the structure and 
output of any non-singular LFSR. This result is best 
approached through the language of cyclic linear codes.  

We use the notation of Section 1, with F being some finite 
field of characteristic 2. Associated with the recurrence 
relation (1.2) is the tap polynomial tap(x), where  

tap(x)= x
k
 + ck 1x

k-1
 + ··· + c0  (3.1)  

 It is this tap polynomial that glues together the various 
outputs for our LFSR. We denote it by  which is of length 
k, with transition matrix A given by Equation (2.1). We 
first need a preliminary result concerning the matrix A.  

Theorem 3.1. 

1.  The minimal monic polynomial of A is tap(x).  

2.  There exists a positive integer m such that tap(x) 
divides x

m 
 1.  

Proof. The characteristic polynomial of A is, by 
calculation, tap(x) which has degree k. By the Cayley 
Hamilton Theorem, A satisfies tap(x). Let f(x) denote the 
minimal polynomial of A. If f(x) is unequal tap(x), then 
deg(f(x))  k  1 and A satisfies f(x). Now the last rows of 
the matrices A

i 
for i = 0,1,2 ... .k  1 are (00..1), (000010 ...), 

..., (10000000), which are linearly independent. Thus A 
satisfies no polynomial equation of degree less than k. This 
proves part 1.  

 To prove part 2, note that the k k matrices A,A
2
,A

3 
,.... 

over the finite field F cannot all be distinct. Thus, for some 
i<j we have A

i 
= A

j
, so that A

j i
 = 1. Since the minimal 

polynomial of A is tap(x), we see that tap(x) divides x
m 

 1 
where m = j  i. This proves part 2.  

 Let n be any positive integer. Then, a code C of length 
n over F is any non-empty set of n-tuples over F. These n-
tuples in C are called the code words of C. If the set of code 

words is closed under addition and scalar multiplication then C 
is linear. In this case we can pick a basis for C consisting of m 
vectors say where m is the dimension of C. We then form a 
generator matrix G for the code C of size m  n and of rank 
m, where m= dim(C).  

 Each vector c=(c0, c1,...,cn) of the linear code C is 
associated with the polynomial  

c(x) = c0 + c1x + ... + cn 1x
n 1 

. (3.2)  

 The linear code C is said to be cyclic if whenever c  C 
then the code vector c1 is in C, where  

c1 = (cn, c0, c1, c2, ..., cn 1), 

is obtained from c by a cyclic shift of order one, namely a 
single shift to the right. Algebraically this shift corresponds to 
multiplying the polynomial of c by x with the proviso that x

n 
= 

1. A shift of order u to the right corresponds to multiplication 
by x

u
. Since C is invariant under all shifts we see that, 

algebraically, C corresponds exactly to an ideal J in the 
polynomial ring F[x]/x

n 1
. Denote the unique monic 

polynomial g(x) of smallest degree in J by g(x). It will follow 
that g(x) must divide x

n 
1. Also, g(x) generates J. This means 

that all polynomials in J are obtained by multiplying g by a 
polynomial and reducing modulo x

n 1
. A generator matrix G 

for the code C is provided by the matrix whose rows are the 
vectors corresponding to the polynomials g(x), xg(x), x

2
g(x), 

..., x
{n 1 k}

g(x), where k = deg(g). Thus the dimension of C is n 
 k; with n  k. Each vector in this basis for C is obtained 

from the previous vector in the basis by a cyclic shift to the 
right.  

 Associated with each cyclic linear linear code C is another 
such code C

 
consisting of all vectors perpendicular to all 

vectors in C, namely those consisting of all vectors of length n 
whose dot product with every vector in C is zero. From 
elementary linear algebra the dimension of C

 
is equal to  

n  dimC = n  (n  k) = k = deg(g).  (3.3)  

Returning to our shift registers of length k, let n denote the 
smallest positive integer such that tap(x) divides x

n 
 1. 

Recalling that the monic polynomial tap(x) has degree k, we 
can now form the cyclic linear code C of length n and 
dimension n  k with generator polynomial tap(x)= g(x). 
Recall that for any polynomial f(x) = c0 + c1x + ··· + ctx

t 
with ct 

= 0, of degree k, the reverse polynomial f1(x) is given by  

f1(x) = ct  + ct 1x + ··· + c0x
t  
. 

 Note that if f has non-zero constant term then both f and f1 

have degree t. We have x
n 

 1= g(x)h(x) where deg(h(x)) = n  
deg(g(x)) = n  k.  

 The following result is standard.  

Theorem 3.2. The code C
 
is generated by h1(x), the reverse 

polynomial of h(x).  

Proof. The vanishing of the dot products of the code word g 
and all its shifts with h1 and all its shifts is equivalent to the 
vanishing of the various coefficients of g(x)h(x) = x

n 
1. Since 

h1(x) has degree n  k, its right cyclic shifts-including the null 
shift-give a cyclic code of dimension k, and we are done.  

 Using the notation above, with  assumed to be non-
singular, we can now prove our main result.  
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Theorem 3.3.  

1.  For any non-zero initial state, the output sequence 
of the non-singular LFSR  has fundamental period 
dividing n where n is the smallest positive integer 
for which the tap polynomial divides the polynomial 
x

n 
 1 in the polynomial ring F [x].  

2. Every possible output sequence of length n is a 
vector in C , and vice versa.  

3. There exists at least one output sequence with 
fundamental period equal to n.  

Proof. Consider an output sequence x = (x0, x1, x2, ..., xn 1) 
of length n . The fact that x is an output sequence implies 
that x is perpendicular to the vector corresponding to g(x) = 
tap(x) given by  

c = (c0, c1, c2, ..., ck 1, 1, 0, ..., 0) 

and its n k cyclic shifts to the right, including the null 
shift. Thus, x is in C

 
and vice versa. This shows part 2.  

 To show part 1, we have that x, being in C , is 
perpendicular, not just to the first n  k shifts of c but to all 
n shifts of c. But this is equivalent to x having period n.  

 Finally, we come to part 3. We examine the codeword x 
corresponding to h1(x). Suppose that x has period u with u 
< n. Then u must divide n, and the elements of x consists 
of n/u identical blocks of u symbols. The same must hold 
for the vector corresponding to h1. Then, algebraically, we 
have  

Therefore,  

h1(x)[x 
u 

 1] = w(x)[x
n 

 1]. 

 Multiplying by g(x), using the fact that the g(x)h(x)= x
n 

1, and canceling the term x
n
  1, we get that  

g(x)w(x) = x
u 

 1 

contradicting the fact that n is the smallest exponent for 
which g(x) divides x

n 
 1. 

4. WHEN THE TAP POLYNOMIAL IS IRREDU-
CIBLE  

We use the notation of previous sections. We are given a 
non-singular LFSR, denoted by , with transition matrix A. 
The period of the matrix A is the smallest positive integer t 
such that A

t 
= I [see Equation (3.1)]. The field F has 

characteristic 2. Our main result is as follows.  

Theorem 4.1. Assume that tap(x) is an irreducible 
polynomial in F[x]. Then  

1. For any non-zero initial state, the output sequence 
has fundamental period t where t is the period of A.  

2. t divides q
k  

 1.  

Proof. We can form the matrix ring over A modulo tap(x). 
Since tap(x) is irreducible this ring is a field, so all 
elements are invertible. Suppose that for some non-zero 
state x we have A

m
x = x with m < t. Then (A

m 
 I)x = 0. 

Since A
m 

 I is either zero or invertible, we conclude that 
A

m 
= I. But this contradicts the minimality of t, proving part 

1. 

 For each non-zero state as input, the resulting state has 
period t. Thus, since the total number of non-zero vectors of 
length k over F is q

k 
 1, part 2 follows.  

Theorem 4.2. A non-singular LFSR has maximum period if 
and only if tap(x) is irreducible and does not divide x

n 
 1 for 

any n < q
k 

 1, where q is the cardinality of the field and k is 
the length of the LFSR.  

Proof. Most of this can be seen from our previous work. The 
remaining difficulty relies on showing that a maximum period 
implies that tap(x) is irreducible. The details of this are to be 
found in [1]. 

5. NON-LINEAR SHIFT REGISTERS  

 LFSRs are notoriously insecure from a cryptographic 
viewpoint. The reason is that all a cryptanalyst needs is a few 
bits of consecutive plaintext and corresponding cipher text to 
determine the key. Bitstrings output by a single LFSR are not 
secure since sequential bits are linear, so it only takes 2k 
output bits (where k is the length of the LFSR) to determine it. 
However, one can use LFSRs as building blocks for more 
secure systems. One mechanism is to use several of them in 
parallel, meaning that n > 1 LFSRs are input to a function f, 
called the combining function, which outputs a keystream. 
Such a system is called a nonlinear combination generator, 
illustrated below  

LFSR-1

LFSR-2

LFSR-n

.

.

.

f keystream

 

 There exists a method of nonlinear combination generation 
called clock controlled generation that attempts to foil attacks 
based upon the regular

 

the clocking (or stepping) of the other 
LFSRs. Necessarily, LFSRs become a trade-off between speed 
and security

. 

If one is not concerned with security

, 

but rather 
speed, such as in cable television transmission, then LFSRs 
are a good bet. For systems of communications requiring high 
security, they

 

are not. However, they can be built into non-
linear pseudo-random number generators.  

We conclude with some general remarks about nonlinear shift 
registers. First, it is important to note that a nonlinear recursion 
can be described using its truth table. For instance, we study 
the following situation.  

 If k is the length of the LFSR, there exist maximal 
sequences of period length 2

k
, which are called de Bruijn 

sequences. This is illustrated as follows.  

x0 x1 x2 f(x0,x1,x2) 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 

1  

1  

1  

1 

1  

0  

0  

1  

1 

1  

0  

1  

0  

1 

1  

0  

0  

1  

0 
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Here 

f(x0,x1,x2) = 1+ x0 + x1 + x1x2. 

 There are few results on finding the general period 
length of a nonlinear shift register when such exists. This 
seems to be a difficult problem.  

6. DETERMINING THE OUTPUT FROM 2k bits  

 The result in this section says that, under certain 
conditions (that are both subtle and general) the entire 
output of a shift register of length k can be determined 
from any 2k consecutive bits under a nonsingularity 
assumption. (The proof has the useful application of 
providing a method for constructing two different shift 
registers of the same length having the same output 
sequence.) Although the result is officially “well-known” 
in the “folk-lore” of the subject we have not seen a formal 
proof; moreover, non-singularity is crucial.  

Theorem 6.1. Let k be a non-singular linear shift register 
of length k. Then the entire output of k can be determined 
from any 2k consecutive bits of the sequence, provided that 
c0  = 1.  

Proof. Suppose the initial state vector is {xk 1, xk 2,...,x0} 

with recurrence relation 
  
x

k
= c

i
x

i
.

i=0

k=1
 Assume that 2k 

consecutive output bits are known and denoted by 0, 

1,..., 2k 1. Then the recurrence relation for k is 
expressible in the following matrix equation. If we set  

   

P =

0 1 2 k 1

1 2 3 k

2 3 4 k 1

k 1 k k 1 2k 2

 

   

C =

c
0

c
1

c
k 2

c
k 1

and Z =

k

k 1

2k 2

2k 1

 

then  

PC = Z.  (6.1) 

 If P is invertible then multiplying by P
1 

will yield the 
recurrence coefficients of k, from which the entire 
sequence can be determined, and the result is established.  

 If P is not invertible, then the equation PX = Z will 
have more than one solution X = C. If D  C is such a 
solution, then PD = Z so P(C + D)= PC + PD = Z + Z is 
the zero matrix since the addition is in a field of 
characteristic 2. By taking transposes, we get that (C + 
D)

t
P

t 
is also the zero matrix where (C + D)

t 
is a nonzero 

row vector and P = P
t 
since P is a symmetric matrix.  

 We now wish to show that the entire output sequence 
for C equals that of D given that they agree on some 

consecutive 2k output bits. To do this we first show that the 
two output sequences will also agree on the succeeding entry if 
and only if equation (6.1), shifted by one bit holds, in the 
fashion explained below.  

 Let  

   

P
1

=

1 2 3 k

2 3 4 k 1

k k+1 k+2 2k 1

 

 We need to prove that P1C = P1D where by assumption,  

   

P
1
C =

k+1

k+2

2k 1

2k

.  

 If we set U =(C + D)
t
, then we know from above that UP is 

the zero matrix, so U(PC) = (UP)C is as well. Thus, the matrix 

product of U with each column of P and also with the right 

column Z is zero. Each column of P1 apart from the last, is a 

column of P. Also, Z is the same as the last column of P1. 

Hence, UP1 is the zero matrix. Transposing, we get 
  
P

1

t (C + D)  

is the zero matrix, so that P1(C+D) is the zero matrix since P1 

is symmetric. This implies that P1C = P1D as we needed.  

 Thus far, we have shown that if two sequences agree on 
any 2k consecutive bits, then they agree on all subsequent bits. 
Now it remains to show that if they agree on 2k consecutive 
bits, they agree on all preceding bits.  

 We assume that  

   

P
1
C = P

1
D =

k+1

k+2

2k 1

2k

 

and we show that PC = PD where  

   

PC =

k

k+1

2k 2

2k 1

.  

 As in the above argument UP1 is the zero matrix. 
Therefore, UP = ( , 0, 0, ..., 0) since the matrix product of U 
with all columns of P, except possibly the first, is zero. Also, 
the matrix product of U with the last column of P1 is zero, and 
this column is PC, so we have that U(PC) is the zero matrix. 
By associativity,  
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(UP)C = ( , 0, 0, ..., 0)C 

so c0 = 0 giving  = 0 since c0  0. Thus, UP is the zero 
matrix, so (C + D)

t
P is the zero matrix, and by transposing, 

P
t
(C + D) is the zero matrix so P(C + D) must be as well. 

This means that PC = PD, so C and D agree on all 
preceding bits, thereby completing the proof.  

Theorem 6.2. Let 1 be a LFSR of length k and let 2 be a 
LFSR of the same length. Suppose that the outputs of 1, 2 

agree on 2k consecutive elements. Then  

1. If at least one of 1, 2 is non-singular then 1 and 

2 have identical output sequences  

2. If they are both singular this need not be the case.  

Proof. If both are non-singular they are both periodic by 
part 1 of Theorem 2.1. In this case the result follows from 
the mere fact, as shown in Theorem 6.1, that since the two 
output sequences agree on 2k bits they agree on all 
subsequent bits. If at least one is non-singular the 
preceding entries will also be equal as shown in Theorem 
6.1.  

 For part 2, we examine Examples 1.2, 1.4. Both outputs 
have the six successive elements 000000 in common but 
their outputs disagree in the second position.  

Remark 6.1. It is easy to construct examples showing that 
the restriction to consecutive elements is absolutely 
necessary in Theorem 6.2. The proof of Theorem 6.2 
suggests the intriguing possibility that two different LFSRs 
produce the same output! This is indeed the case. Our next 
result clarifies the situation.  

Theorem 6.3. It is possible for two different LFSR of 
length k to produce the same output sequence. In such a 

case this common output sequence can be produced by another 
LFSR of shorter length.  

Sketch of proof. Using the notation of Theorem 6.1 we have 
that UP = UP1 = UP2 ... Thus U causes a dependency among 
the rows of P, P1, P2, P3 ... This in turn yields an LFSR of 
length less than k that produces the given output sequence. For 
an example, let k = 4 and let  1, 2 have initial state x3, x2, x1, 
x0 = 1,0,1,1. Let  1 and 2 have recurrence given by x4 = x0 + 
x2, x4 = x0 + x1 + x3, respectively. The common output sequence 
has period 3 and is 110110110 ... This same output can be 
generated by the length 2 LFSR with initial state 11 and the 
Fibonacci recurrence given by x2 = x1 + x0.  

Corollary 6.1. The shortest LFSR that generates a given 
sequence is unique.  

Remark 6.2. One can use the Berlakamp-Massey algorithm to 
determine the shortest LFSR given in Corollary 6.1.  

 Note that the reader may find more information on the 
background to the above discussion in [2, 3].  
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