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Abstract: Ant colony algorithm has been widely applied to lots of fields, such as combinatorial optimization, function 
optimization, system identification, network routing, robot path planning, data mining and large-scale integrated 
circuit design of integrated wiring, etc. And it achieved good results. But it still has one weak point which is the slowing 
convergence speed. To aim at the lacks, an improved ACO is presented. This paper studies a kind of improved ant 
colony algorithm with crossover operator which makes crossover operator among better results at the end of each 
iteration. The experiment results indicate that the improved ACO is effectual. 
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1. INTRODUCTION 

 Research over the recent years has shown that the ACO 
has a powerful capacity to find out solutions to 
combinatorial optimization problems, has the advantage of 
distributed computing, and is easy to accommodate with 
other algorithms, thus displaying powerful robustness. 
Besides, it has displayed a high flexibility and robustness in 
dynamic environments [1]. 

 Reference [2] used an Ant Colony Optimization 
algorithm to achieve a satisfactory solution in a reasonable 
computation time. A variety of simulation experiments were 
run to choose ACO parameter values and to demonstrate the 
performance of the proposed method. The simulation results 
showed that the proposed ACO algorithm is superior to the 
common Apparent Tardiness Cost-Batched Apparent 
Tardiness Cost rule for minimizing the TWT and make span. 
The arrival time distribution and the number of jobs strongly 
affected the ACO algorithm’s performance. 

 Reference [3] considers the dynamic TSP (DTSP), where 
cities are replaced by new ones during the execution of the 
algorithm. Under such environments, traditional ACO 
algorithms face a serious challenge: once they converge, they 
cannot adapt efficiently to environmental changes. To 
improve the performance of ACO on the DTSP, a M-ACO 
algorithm is used to solve the DTSP. 

 Reference [4] presents a proposal for the efficient solution to 
one of the most frequently requested services on social 
networks; namely, taking different types of relationships into 
account in order to locate a particular member of the network. 
The solution is based on a biologically-inspired modification of 
the ant colony optimization algorithm. 

 

 Reference [5] addresses the Surgical Case Assignment 
Problem with an objective of minimizing the total unexploited 
and operating cost. A two-stage ant colony optimization (ACO) 
algorithm is introduced and the results show that ACO 
outperformed the other algorithms and reached better solutions 
in a faster computational time. 
 Reference [6] presents a solution methodology using ant 
colony optimization (ACO) for a distribution– allocation 
problem in a two-stage supply chain with fixed cost for a 
transportation route. Taguchi method for robust design is 
adopted for finding the optimum combination of parameters of 
the ACO algorithm. 
 A fast two-stage ACO algorithm is proposed in [7], which 
overcomes the inherent problems of traditional ACO 
algorithms. The basic idea is to split the heuristic search into 
two stages: preprocess stage and path planning stage. In the 
preprocess stage, the scent information is broadcasted to the 
whole map and then ants do path planning under the direction of 
scent information. The algorithm is tested in maps of various 
complexities and compared with different algorithms. The 
results show that the proposed algorithm has the good 
performance and convergence speed. 
 All these studies have contributed to the improvement of the 
ACO to some extent, but they have little obvious effect on 
increasing the convergence speed. The deficiency remains to the 
bottleneck constraining the ACO from being widely applied in 
large-scale optimization problems. For this end, on the basis of 
the solution to the Traveling Salesman Problem (TSP), we 
studied a kind of improved ant colony algorithm with crossover 
operator (COACO). The experiment results show that the 
algorithm proposed in this study can substantially increase the 
convergence speed of the ACO. 

2. THE ANT COLONY OPTIMIZATION ALGORITHM 
(ACO) 

 The ACO simulates the behavioral feature of ants which 
will spontaneously find the shortest path from the colony to 
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the food source in their foraging process. In addition to this 
simulation, people also improve this feature and apply it to 
many different fields. Ants select the path by way of the 
pheromone density. On the various paths from the colony to 
the food source, originally not a bit of pheromone is left on 
them. When the first batch of ants select a path for the first 
time, they do not know which path is the shortest, and 
therefore their selection is always blind. Subsequently, other 
batches of ants will use the pheromone left by the first batch 
of ants as a kind of reference information and select the 
desired path according to the pheromone density. For those 
ants that carry the food back to their colony, when they head 
for the food source once again, they will not travel along the 
same route but will reselect a new path. In this case, they 
will select the path according to the pheromone density left 
before by the ants. In the process of traveling, the ants will 
select their path depending solely on the pheromone density, 
and therefore the pheromone density on the path whose 
pheromone density is dense will be increasingly denser, and 
more and more ants will follow this path until almost all the 
ants follow this path, which is called the shorter path. 

 Dorigo et al. put forward the ant system algorithm (AS) 
and the ant colony system algorithm (ACS) successively 
which simulate the behavior of ants in their foraging process. 
These scholars defined the AS and the ACS as the ant colony 
optimization algorithm (ACO). 

2.1. The Basic Ant Colony System Model (AS) 

 Now we take the TSP (travelling salesman problem) in n 
cities as an example to illustrate the ant colony system model 

[8]. Suppose m is the quantity of the ants in the colony, 
 
dij

(i,j=1,2,…,n) stands for the distance from the city i and city 
j, and   bi (t)  stands for the quantity of ants at the time of t in 

city i, then we will have 
  
m = bi (t)

i=1

n

∑ . 

  
τ ij (t)  stands for the leftover pheromone amount on the path 
from city i and city j at the time of t. At the beginning, the 
amounts of pheromone on various paths are equal. Suppose 

  
τ ij (0) = C  (C is a constant). In the traveling process, ant k 
(k=1,2,…,m) will determine its moving direction according 
to the pheromone amount left on each path. 

  
pij

k (t)  stands for 
the probability of ant k’s traveling from city i to city j at the 
time of t: 

  

pij
k =

[τ ij (t )]α [ηij ]β

[τ ik (t )]α [ηik ]β

k∉tabuk

∑ , j ∉tabuk

0, j ∈tabuk

⎧

⎨
⎪

⎩
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  (1) 

 In this equation: 
 
ηij is the heuristics information when ant 

travels from city i to city j, and generally 
  
ηij = 1

dij
; 

 
dij  is the 

distance from city i to city j; α is the degree of importance 
of the leftover information on the path from city i to city j; 
β is the degree of importance of the heuristics information; 

 tabuk  (k=1,2,…,m) is used to record the city which ant k is 
currently traveling through, which is called tabu table, i.e., 
the next city which is not allowed to choose; the set  tabuk  
will be adjusted dynamically in the evolution process. 

 After n moments, all the ants have completed a tour, and 
their tabu table for the present tour will be full and at this 
moment the tabu table should be emptied. Meanwhile, the 
city which the ant is currently in should be set  tabuk , 
preparing for the next tour. At this moment, compute the 
path Lk that each ant has covered and retain the shortest path 

  
Lkmin

. 

  
Lkmin

= min{Lk}(k = 1,2,...,m)   (2) 

 With the passage of time, the information left before will 
gradually fade away and parameter  1− ρ  is used to stand for 
the information eclipse degree. After the ant has completed a 
cycle, the pheromone amount on each path will be adjusted 
according to equation (3): 

  
τ ij (t + n) = (1− ρ)τ ij (t)+ ρΔτ ij   (3) 

 In this equation: 

  
Δτ ij = Δτ ij

k

k=1

m

∑   (4) 

  
Δτ ij

k =
Q
Lk

,Whenthekthant passescity i and j

0,Others

⎧
⎨
⎪

⎩⎪
  (5) 

 
Δτ ij

k  represents the amount of the pheromone left by the kth 

ant when it passes the path from city i to city j, 
 
Δτ ij  

represents the total amount of the pheromone left by all the 
ants on the path from city i to city j in one complete loop. 

 When the preset loop number NC has been reached, the 
algorithm will terminate its execution. The shortest path in 
NC loops will be the shortest path found out by the 
algorithm. 

2.2. The ACS Algorithm 

 The ACS is mainly different from the AS in three 
aspects: 

1) The move rules of the ants are different; 

2) The global updating rules are different; 

3) Local updating rules which adjust the amount of the 
pheromone on various paths are newly added. 

 Now we will describe the ACS algorithm. 

 Step 1: Initiation. The amount of the pheromone on each 
side is initiated into a tiny constant value; allocate m ants 
randomly to n cities, and meanwhile set the starting city into 
the tabu table. 

 Step 2: Each ant will choose the next city according to 
equation (6) and modify the tabu table. 



98    The Open Mechanical Engineering Journal, 2014, Volume 8 Guo and Diao 

  

j =
argmax{[τ ij (t)][ηij (t)]

β},if q ≤ q0
j∉tabuk

S ,otherwise

⎧
⎨
⎪

⎩⎪
  (6) 

  q0 ∈[0,1]  is an initially set parameter;  q is a random number 
and   q ∈[0,1] ; S is a random variable determined in 
accordance with equation (1). This strategy obviously 
increases the variety of any searching, thus avoiding any 
premature falling into the local best result and getting 
bogged down. 

 Step 3: Local updating of pheromone. After each ant has 
chosen a city, the amount of pheromone on each side will be 
updated according to equation (7). 

  
τ ij (t +1) = (1− ρ)τ ij (t)+ ρΔτ ij

k   (7) 

  
Δτ ij

k =
Q
l jb

,Whentheant travelsthroughcity i and j

0,Otherwise

⎧
⎨
⎪

⎩⎪
  (8) 

 
l jb  is the path length that ant k has covered from the starting 
city to the present city. All the other parameters are identical 
with those of equation (3). 

 Step 4: Computing of the optimal path. After m ants have 
travelled through all the cities, compute the length of the 
optimal path according to equation (9). 

   lmin = min{lk},(k = 1,2,,m)   (9) 

 lk is the path length that the kth ant has covered in its 
travelling. 

 Step 5: Global updating of pheromone. After all the ants 
have travelled through all the cities, update only the amount 
of the pheromone on the optimal path according to equation 
(10). 

  
τ ij

new = (1−α )τ ij
old +αΔτ ij   (10) 

  
Δτ ij

k =
1
lk

, If the global best result isthrough path

0,Otherwise

⎧
⎨
⎪

⎩⎪
  (11) 

 In equation (10), α  is the volatilization quotiety of the 
global pheromone and  lk  is the length of the optimal path. 

 Step 6: If the designated search number is not attained, 
then empty the tabu table and repeat the above steps. 

3. THE COACO ALGORITHM 

3.1. Rationale of the COACO Algorithm 

3.1.1. Even Distribution Strategy of the Initial Ant Colony 

 In the ACS algorithm, m ants are put onto n cities in the 
initiation, and thus some cities may have many ants while 
some cities may have no ant at all. However, in the ACS 
algorithm, it is according to equation (6) that each ant 
chooses the next city. Because the amount of pheromone on 
each path is initially identical, therefore the ant mainly uses 
the distance between the two cities as the heuristic factor 

when it chooses the next city. In this way, when there are 
relatively more ants in a certain city, the density of the 
pheromone on a certain path will be strengthened due to the 
relatively larger number of ants travelling along the path. 
However, the path is not necessarily the shortest path. 

 In order to solve this problem, we adopted a method to 
distribute the ants evenly, i.e., distribute m ants to n cities 
and make sure that each city receives at least one ant 
(suppose m≥n). Thus, the search space of the solution is 
enlarged and the probability of getting the best result is 
increased. 
3.1.2. Nearest Neighbor Node Choosing Strategy 

 In the ACS algorithm, when the ant chooses the next city, 
the probability of its transfer from city i to city j is 
computed, and then the city whose transfer probability is 
larger will be chosen to travel along, while the distance 
between the two cities is used as the heuristic factor in the 
probability computation. Therefore, the computation result 
of next city j is possibly not the shortest city from city i. 
When there are many cities, the computation work of 
transfer probability from city i to other cities is rather 
awesome, the computation speed is very slow, and therefore 
the convergence of the algorithm is exceptionally slow. 
Consequently, we designed the nearest neighbor node 
choosing rules and in each computation attempt we 
computed only the probabilities of those cities that are 
consistent with the rules, thus substantially reducing the time 
needed for computation and increasing the convergence 
speed of the algorithm. 

 The nearest neighbor node choosing rules are as follows: 
First of all, a coordinate system is established according to 
the coordinate files of the n cities so as to fix the positions of 
the n cities, and the distances of every two cities are 
computed, thus forming an  n× n  distance matrix A; then, 
sort the distances in each column from short to long, and 
then replace the sorted city distances with the cities’ serial 
numbers; finally, delete the last line (because we presuppose 
that the distance from city i to city i is infinity, namely 
unreachable, and therefore the distance between them is at 
the bottom after sorting), thus forming a   (n−1)× n  distance 
index matrix B. Thus, the ith column from the first line to the 
(n-1)th line is the numbering arrangement of the cities from 
near to faraway from city i. 

 In the COACO algorithm, we designate that only the 
probabilities of d cities nearer to city i will be computed. 
Thus, when there are many cities, if we designate a smaller d 
value, then the convergence speed of the algorithm will be 
enhanced and the precision of the algorithm can be 
increased. 
3.1.3. Crossover Operator Choosing Strategy 

 Because the ACS algorithm is easy to fall into the local 
best result and cause the phenomenon of being bogged 
down, we designed a strategy to conduct crossover operation 
of better results, thus solving the problem of rapidly 
converging the algorithm into a certain result, diversifying 
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the space of results, and increasing the possibility of seeking 
for the best result. 

 The crossover operator is mainly used for the evolution 
of algorithm. This study adopts the greedy crossover 
operator to conduct crossover operation. 

 In the present algorithm, first of all, at the end of each round 
of cycle, the length of the path covered by each ant is computed, 
and the probability of the kth ant’s being chosen as the father 
generation will be computed in accordance with equation (12). 
Then, the probability of each ant’s being chosen as the father 
generation will be computed, and then two of them will be 
chosen by way of roulette to be used as the two father 
generations of the crossover operator so as to realize the 
crossover operation. Finally, the path lengths of the two newly 
born generations will be computed, and if the result is better 
than the optimal result of the round concerned, then the present 
result will be used to replace the optimal result of the round 
concerned, and equation (10) will be used to update the amount 
of the pheromone on the path; if the result is not better than the 
optimal result of the round concerned, then the processing of the 
descendants will be abandoned. 

   

pparent
k =

1
Lk

1
Li

i=1

m

∑
,(k = 1,2,,m)   (12) 

3.2. The COACO Algorithm 

 Now we will describe the COACO algorithm proposed in 
our study. 

 Step 1: Initiation. According to the coordinate files of the 
n cities, we set up a nearest node matrix B, designate the 
nearest nodes to be queried as d (d≤n), set the counter to 
NC=MAX, set the initial amount of pheromone on each path 
as a constant, distribute m ants evenly into n cities and 
guarantee that each city has at least one ant, and set the city 
to which the ant is allocated into the tabu table of the ant. 

 Step 2: For each ant, with the present city i as the center, 
according to the nearest node choosing rules, we will sort out 
the d cities that ants have not travelled through and compute 
their transfer probability, and if the number of the cities that 
have not be travelled through is less than d, then all will be 
computed; after that, we will select a city j whose transfer 
probability is larger to conduct the transfer. In the d cities, 
the node j will be selected according to equation (13). 

  

j = argmax{[τ ij (t)][ηij (t)]
β},if q ≤ q0

j∉tabuk

pij
k = [τ ij (t )]α [ηij ]β

[τ ik (t )]α [ηik ]β

k∉tabuk

∑ , j ∉tabuk ,Otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (13) 

 In equation (13), q is a random number (0<q≤1); when 

  q > q0 , the transfer probability 
 
pij

k of d cities will be 
computed, the city j will be selected according to the roulette 
rules, and city j will be added into this ant’s tabu table  tabuk . 

 Step 3: Local updating of pheromone. This step is 
identical with that of the local updating of pheromone in the 
ACS algorithm. 

 Step 4: Computing of the optimal path. When m ants 
have finished travelling through all the cities, we will 
compute the length of the path that each ant has covered, 
find out the optimal path among the paths that have been 
covered by these m ants, and save its travelling path and its 
length of the path. 

 Step 5: Global updating of pheromone. When all the ants 
have travelled through all the cities, first in accordance with 
equation (10) we will update the pheromone on the optimal 
path found out in Step 4, and then we will conduct the 
crossover operation and update the optimal path length and 
the global pheromone. 

 Step 6: If the designated search number is not attained, 
then empty the tabu table and repeat the above steps. 

4. COMPARISON OF THE EXPERIMENT RESULTS 

 In order to verify the validity of the algorithm proposed 
in this study, we downloaded the well-known TSP example 
eil76 from TSPLIB, conducted experiments, and compared 
our results with those of the ACS algorithm and those of the 
algorithm proposed in reference [9] in the two aspects of 
algorithm convergence and experiment results. Because the 
parameter selection has no existing theory to guide, we had 
to determine the necessary parameters by way of 
experiments. The parameters set by the present algorithm are 
as follows: in equation (1), α =1, β =4, ρ =0.6, Q=20000, 

  q0 =0.5, d=15; in equation (10), α =0.5. 

4.1. Experimental Comparison of the Convergence Trait 

 Fig. (1) shows the convergence comparison when we 
obtained the optimal result by conducting ten rounds of 
experiments to solve the eil76 TSP problem by means of 
different methods. In Fig. (1), the horizontal coordinate 
stands for the algorithm’s iteration number of times, and the 
vertical coordinate stands for the obtained optimal path 
length. The solid line stands for the algorithm’s convergence 
trait, the dot-and-dash line stands for the ACS algorithm’s 
 

 
Fig. (1). Comparison of the convergence trait of three ACO’s in 
solving the eil76 TSP problem. 
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convergence trait, and the continuous dashed line stands for 
the convergence trait of the algorithm in reference [9]. Our 
experiments show that the present algorithm can indeed 
increase the convergence speed of the algorithm. 

4.2. Comparison of the Results of Optimizing the TSP 
Problem 

 Table 1 presents the comparison of the better results 
obtained from solving the eil76 TSP problem. From Table 1 
it can be seen that although the optimal result obtained from 
using the present algorithm is short of the currently 
published optimal result, it can been seen from Fig. (1) that 
its convergence speed is obviously much faster than those of 
the other two algorithms. 
Table 1  Comparison of the better results of the eil76 TSP 

problem. 
 

Algorithm Result 

ACS 543.578023 

Algorithm in reference [9] 539.741359 

Algorithm in proposed in the 
present study  

540.48414 

Result published by website [10] 538 

 

CONCLUSION 

 Our experiments have shown that the method employed 
by the present study is effective to increase the convergence 
speed of the algorithm. However, the ACO algorithm is not 
like the genetic algorithm which has a solid mathematical 
basis and a systematic analyzing methodology. Besides, the 
parameters involved in our experiments have no theory to 
guide and the research findings obtained so far are mostly 
based on experiments. Nevertheless, we can believe that the 

ACO algorithm, like any other intelligent algorithm, will be 
applied more and more widely in more fields and gradually 
form its own theoretical basis. 
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