
Send Orders for Reprints to reprints@benthamscience.net

96 The Open Mechanical Engineering Journal, 2014, 8, 96-100

 1874-155X/14 2014 Bentham Open

Open Access

An Improved Ant Colony Optimization Algorithm with Crossover
Operator
Junen Guo* and Wenguang Diao

Luoyang Institute of Science and Technology, Luoyang, 471023, China

Abstract: Ant colony algorithm has been widely applied to lots of fields, such as combinatorial optimization, function
optimization, system identification, network routing, robot path planning, data mining and large-scale integrated
circuit design of integrated wiring, etc. And it achieved good results. But it still has one weak point which is the slowing
convergence speed. To aim at the lacks, an improved ACO is presented. This paper studies a kind of improved ant
colony algorithm with crossover operator which makes crossover operator among better results at the end of each
iteration. The experiment results indicate that the improved ACO is effectual.

Keywords: Ant colony optimization, combinatorial optimization, convergence speed, crossover operator, genetic algorithm.

1. INTRODUCTION

 Research over the recent years has shown that the ACO
has a powerful capacity to find out solutions to
combinatorial optimization problems, has the advantage of
distributed computing, and is easy to accommodate with
other algorithms, thus displaying powerful robustness.
Besides, it has displayed a high flexibility and robustness in
dynamic environments [1].

 Reference [2] used an Ant Colony Optimization
algorithm to achieve a satisfactory solution in a reasonable
computation time. A variety of simulation experiments were
run to choose ACO parameter values and to demonstrate the
performance of the proposed method. The simulation results
showed that the proposed ACO algorithm is superior to the
common Apparent Tardiness Cost-Batched Apparent
Tardiness Cost rule for minimizing the TWT and make span.
The arrival time distribution and the number of jobs strongly
affected the ACO algorithm’s performance.

 Reference [3] considers the dynamic TSP (DTSP), where
cities are replaced by new ones during the execution of the
algorithm. Under such environments, traditional ACO
algorithms face a serious challenge: once they converge, they
cannot adapt efficiently to environmental changes. To
improve the performance of ACO on the DTSP, a M-ACO
algorithm is used to solve the DTSP.

 Reference [4] presents a proposal for the efficient solution to
one of the most frequently requested services on social
networks; namely, taking different types of relationships into
account in order to locate a particular member of the network.
The solution is based on a biologically-inspired modification of
the ant colony optimization algorithm.

 Reference [5] addresses the Surgical Case Assignment
Problem with an objective of minimizing the total unexploited
and operating cost. A two-stage ant colony optimization (ACO)
algorithm is introduced and the results show that ACO
outperformed the other algorithms and reached better solutions
in a faster computational time.
 Reference [6] presents a solution methodology using ant
colony optimization (ACO) for a distribution– allocation
problem in a two-stage supply chain with fixed cost for a
transportation route. Taguchi method for robust design is
adopted for finding the optimum combination of parameters of
the ACO algorithm.
 A fast two-stage ACO algorithm is proposed in [7], which
overcomes the inherent problems of traditional ACO
algorithms. The basic idea is to split the heuristic search into
two stages: preprocess stage and path planning stage. In the
preprocess stage, the scent information is broadcasted to the
whole map and then ants do path planning under the direction of
scent information. The algorithm is tested in maps of various
complexities and compared with different algorithms. The
results show that the proposed algorithm has the good
performance and convergence speed.
 All these studies have contributed to the improvement of the
ACO to some extent, but they have little obvious effect on
increasing the convergence speed. The deficiency remains to the
bottleneck constraining the ACO from being widely applied in
large-scale optimization problems. For this end, on the basis of
the solution to the Traveling Salesman Problem (TSP), we
studied a kind of improved ant colony algorithm with crossover
operator (COACO). The experiment results show that the
algorithm proposed in this study can substantially increase the
convergence speed of the ACO.

2. THE ANT COLONY OPTIMIZATION ALGORITHM
(ACO)

 The ACO simulates the behavioral feature of ants which
will spontaneously find the shortest path from the colony to

An Improved Ant Colony Optimization Algorithm with Crossover Operator The Open Mechanical Engineering Journal, 2014, Volume 8 97

the food source in their foraging process. In addition to this
simulation, people also improve this feature and apply it to
many different fields. Ants select the path by way of the
pheromone density. On the various paths from the colony to
the food source, originally not a bit of pheromone is left on
them. When the first batch of ants select a path for the first
time, they do not know which path is the shortest, and
therefore their selection is always blind. Subsequently, other
batches of ants will use the pheromone left by the first batch
of ants as a kind of reference information and select the
desired path according to the pheromone density. For those
ants that carry the food back to their colony, when they head
for the food source once again, they will not travel along the
same route but will reselect a new path. In this case, they
will select the path according to the pheromone density left
before by the ants. In the process of traveling, the ants will
select their path depending solely on the pheromone density,
and therefore the pheromone density on the path whose
pheromone density is dense will be increasingly denser, and
more and more ants will follow this path until almost all the
ants follow this path, which is called the shorter path.

 Dorigo et al. put forward the ant system algorithm (AS)
and the ant colony system algorithm (ACS) successively
which simulate the behavior of ants in their foraging process.
These scholars defined the AS and the ACS as the ant colony
optimization algorithm (ACO).

2.1. The Basic Ant Colony System Model (AS)

 Now we take the TSP (travelling salesman problem) in n
cities as an example to illustrate the ant colony system model

[8]. Suppose m is the quantity of the ants in the colony,

dij

(i,j=1,2,…,n) stands for the distance from the city i and city
j, and bi (t) stands for the quantity of ants at the time of t in

city i, then we will have

m = bi (t)

i=1

n

∑ .

τ ij (t) stands for the leftover pheromone amount on the path
from city i and city j at the time of t. At the beginning, the
amounts of pheromone on various paths are equal. Suppose

τ ij (0) = C (C is a constant). In the traveling process, ant k
(k=1,2,…,m) will determine its moving direction according
to the pheromone amount left on each path.

pij

k (t) stands for
the probability of ant k’s traveling from city i to city j at the
time of t:

pij
k =

[τ ij (t)]α [ηij]β

[τ ik (t)]α [ηik]β

k∉tabuk

∑ , j ∉tabuk

0, j ∈tabuk

⎧

⎨
⎪

⎩
⎪

 (1)

 In this equation:

ηij is the heuristics information when ant

travels from city i to city j, and generally

ηij = 1

dij
;

dij is the

distance from city i to city j; α is the degree of importance
of the leftover information on the path from city i to city j;
β is the degree of importance of the heuristics information;

 tabuk (k=1,2,…,m) is used to record the city which ant k is
currently traveling through, which is called tabu table, i.e.,
the next city which is not allowed to choose; the set tabuk
will be adjusted dynamically in the evolution process.

 After n moments, all the ants have completed a tour, and
their tabu table for the present tour will be full and at this
moment the tabu table should be emptied. Meanwhile, the
city which the ant is currently in should be set tabuk ,
preparing for the next tour. At this moment, compute the
path Lk that each ant has covered and retain the shortest path

Lkmin

.

Lkmin

= min{Lk}(k = 1,2,...,m) (2)

 With the passage of time, the information left before will
gradually fade away and parameter 1− ρ is used to stand for
the information eclipse degree. After the ant has completed a
cycle, the pheromone amount on each path will be adjusted
according to equation (3):

τ ij (t + n) = (1− ρ)τ ij (t)+ ρΔτ ij (3)

 In this equation:

Δτ ij = Δτ ij

k

k=1

m

∑ (4)

Δτ ij

k =
Q
Lk

,Whenthekthant passescity i and j

0,Others

⎧
⎨
⎪

⎩⎪
 (5)

Δτ ij

k represents the amount of the pheromone left by the kth

ant when it passes the path from city i to city j,

Δτ ij

represents the total amount of the pheromone left by all the
ants on the path from city i to city j in one complete loop.

 When the preset loop number NC has been reached, the
algorithm will terminate its execution. The shortest path in
NC loops will be the shortest path found out by the
algorithm.

2.2. The ACS Algorithm

 The ACS is mainly different from the AS in three
aspects:

1) The move rules of the ants are different;

2) The global updating rules are different;

3) Local updating rules which adjust the amount of the
pheromone on various paths are newly added.

 Now we will describe the ACS algorithm.

 Step 1: Initiation. The amount of the pheromone on each
side is initiated into a tiny constant value; allocate m ants
randomly to n cities, and meanwhile set the starting city into
the tabu table.

 Step 2: Each ant will choose the next city according to
equation (6) and modify the tabu table.

98 The Open Mechanical Engineering Journal, 2014, Volume 8 Guo and Diao

j =
argmax{[τ ij (t)][ηij (t)]

β},if q ≤ q0
j∉tabuk

S ,otherwise

⎧
⎨
⎪

⎩⎪
 (6)

 q0 ∈[0,1] is an initially set parameter; q is a random number
and q ∈[0,1] ; S is a random variable determined in
accordance with equation (1). This strategy obviously
increases the variety of any searching, thus avoiding any
premature falling into the local best result and getting
bogged down.

 Step 3: Local updating of pheromone. After each ant has
chosen a city, the amount of pheromone on each side will be
updated according to equation (7).

τ ij (t +1) = (1− ρ)τ ij (t)+ ρΔτ ij

k (7)

Δτ ij

k =
Q
l jb

,Whentheant travelsthroughcity i and j

0,Otherwise

⎧
⎨
⎪

⎩⎪
 (8)

l jb is the path length that ant k has covered from the starting
city to the present city. All the other parameters are identical
with those of equation (3).

 Step 4: Computing of the optimal path. After m ants have
travelled through all the cities, compute the length of the
optimal path according to equation (9).

 lmin = min{lk},(k = 1,2,,m) (9)

 lk is the path length that the kth ant has covered in its
travelling.

 Step 5: Global updating of pheromone. After all the ants
have travelled through all the cities, update only the amount
of the pheromone on the optimal path according to equation
(10).

τ ij

new = (1−α)τ ij
old +αΔτ ij (10)

Δτ ij

k =
1
lk

, If the global best result isthrough path

0,Otherwise

⎧
⎨
⎪

⎩⎪
 (11)

 In equation (10), α is the volatilization quotiety of the
global pheromone and lk is the length of the optimal path.

 Step 6: If the designated search number is not attained,
then empty the tabu table and repeat the above steps.

3. THE COACO ALGORITHM

3.1. Rationale of the COACO Algorithm

3.1.1. Even Distribution Strategy of the Initial Ant Colony

 In the ACS algorithm, m ants are put onto n cities in the
initiation, and thus some cities may have many ants while
some cities may have no ant at all. However, in the ACS
algorithm, it is according to equation (6) that each ant
chooses the next city. Because the amount of pheromone on
each path is initially identical, therefore the ant mainly uses
the distance between the two cities as the heuristic factor

when it chooses the next city. In this way, when there are
relatively more ants in a certain city, the density of the
pheromone on a certain path will be strengthened due to the
relatively larger number of ants travelling along the path.
However, the path is not necessarily the shortest path.

 In order to solve this problem, we adopted a method to
distribute the ants evenly, i.e., distribute m ants to n cities
and make sure that each city receives at least one ant
(suppose m≥n). Thus, the search space of the solution is
enlarged and the probability of getting the best result is
increased.
3.1.2. Nearest Neighbor Node Choosing Strategy

 In the ACS algorithm, when the ant chooses the next city,
the probability of its transfer from city i to city j is
computed, and then the city whose transfer probability is
larger will be chosen to travel along, while the distance
between the two cities is used as the heuristic factor in the
probability computation. Therefore, the computation result
of next city j is possibly not the shortest city from city i.
When there are many cities, the computation work of
transfer probability from city i to other cities is rather
awesome, the computation speed is very slow, and therefore
the convergence of the algorithm is exceptionally slow.
Consequently, we designed the nearest neighbor node
choosing rules and in each computation attempt we
computed only the probabilities of those cities that are
consistent with the rules, thus substantially reducing the time
needed for computation and increasing the convergence
speed of the algorithm.

 The nearest neighbor node choosing rules are as follows:
First of all, a coordinate system is established according to
the coordinate files of the n cities so as to fix the positions of
the n cities, and the distances of every two cities are
computed, thus forming an n× n distance matrix A; then,
sort the distances in each column from short to long, and
then replace the sorted city distances with the cities’ serial
numbers; finally, delete the last line (because we presuppose
that the distance from city i to city i is infinity, namely
unreachable, and therefore the distance between them is at
the bottom after sorting), thus forming a (n−1)× n distance
index matrix B. Thus, the ith column from the first line to the
(n-1)th line is the numbering arrangement of the cities from
near to faraway from city i.

 In the COACO algorithm, we designate that only the
probabilities of d cities nearer to city i will be computed.
Thus, when there are many cities, if we designate a smaller d
value, then the convergence speed of the algorithm will be
enhanced and the precision of the algorithm can be
increased.
3.1.3. Crossover Operator Choosing Strategy

 Because the ACS algorithm is easy to fall into the local
best result and cause the phenomenon of being bogged
down, we designed a strategy to conduct crossover operation
of better results, thus solving the problem of rapidly
converging the algorithm into a certain result, diversifying

An Improved Ant Colony Optimization Algorithm with Crossover Operator The Open Mechanical Engineering Journal, 2014, Volume 8 99

the space of results, and increasing the possibility of seeking
for the best result.

 The crossover operator is mainly used for the evolution
of algorithm. This study adopts the greedy crossover
operator to conduct crossover operation.

 In the present algorithm, first of all, at the end of each round
of cycle, the length of the path covered by each ant is computed,
and the probability of the kth ant’s being chosen as the father
generation will be computed in accordance with equation (12).
Then, the probability of each ant’s being chosen as the father
generation will be computed, and then two of them will be
chosen by way of roulette to be used as the two father
generations of the crossover operator so as to realize the
crossover operation. Finally, the path lengths of the two newly
born generations will be computed, and if the result is better
than the optimal result of the round concerned, then the present
result will be used to replace the optimal result of the round
concerned, and equation (10) will be used to update the amount
of the pheromone on the path; if the result is not better than the
optimal result of the round concerned, then the processing of the
descendants will be abandoned.

pparent
k =

1
Lk

1
Li

i=1

m

∑
,(k = 1,2,,m) (12)

3.2. The COACO Algorithm

 Now we will describe the COACO algorithm proposed in
our study.

 Step 1: Initiation. According to the coordinate files of the
n cities, we set up a nearest node matrix B, designate the
nearest nodes to be queried as d (d≤n), set the counter to
NC=MAX, set the initial amount of pheromone on each path
as a constant, distribute m ants evenly into n cities and
guarantee that each city has at least one ant, and set the city
to which the ant is allocated into the tabu table of the ant.

 Step 2: For each ant, with the present city i as the center,
according to the nearest node choosing rules, we will sort out
the d cities that ants have not travelled through and compute
their transfer probability, and if the number of the cities that
have not be travelled through is less than d, then all will be
computed; after that, we will select a city j whose transfer
probability is larger to conduct the transfer. In the d cities,
the node j will be selected according to equation (13).

j = argmax{[τ ij (t)][ηij (t)]
β},if q ≤ q0

j∉tabuk

pij
k = [τ ij (t)]α [ηij]β

[τ ik (t)]α [ηik]β

k∉tabuk

∑ , j ∉tabuk ,Otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (13)

 In equation (13), q is a random number (0<q≤1); when

 q > q0 , the transfer probability

pij

k of d cities will be
computed, the city j will be selected according to the roulette
rules, and city j will be added into this ant’s tabu table tabuk .

 Step 3: Local updating of pheromone. This step is
identical with that of the local updating of pheromone in the
ACS algorithm.

 Step 4: Computing of the optimal path. When m ants
have finished travelling through all the cities, we will
compute the length of the path that each ant has covered,
find out the optimal path among the paths that have been
covered by these m ants, and save its travelling path and its
length of the path.

 Step 5: Global updating of pheromone. When all the ants
have travelled through all the cities, first in accordance with
equation (10) we will update the pheromone on the optimal
path found out in Step 4, and then we will conduct the
crossover operation and update the optimal path length and
the global pheromone.

 Step 6: If the designated search number is not attained,
then empty the tabu table and repeat the above steps.

4. COMPARISON OF THE EXPERIMENT RESULTS

 In order to verify the validity of the algorithm proposed
in this study, we downloaded the well-known TSP example
eil76 from TSPLIB, conducted experiments, and compared
our results with those of the ACS algorithm and those of the
algorithm proposed in reference [9] in the two aspects of
algorithm convergence and experiment results. Because the
parameter selection has no existing theory to guide, we had
to determine the necessary parameters by way of
experiments. The parameters set by the present algorithm are
as follows: in equation (1), α =1, β =4, ρ =0.6, Q=20000,

 q0 =0.5, d=15; in equation (10), α =0.5.

4.1. Experimental Comparison of the Convergence Trait

 Fig. (1) shows the convergence comparison when we
obtained the optimal result by conducting ten rounds of
experiments to solve the eil76 TSP problem by means of
different methods. In Fig. (1), the horizontal coordinate
stands for the algorithm’s iteration number of times, and the
vertical coordinate stands for the obtained optimal path
length. The solid line stands for the algorithm’s convergence
trait, the dot-and-dash line stands for the ACS algorithm’s

Fig. (1). Comparison of the convergence trait of three ACO’s in
solving the eil76 TSP problem.

100 The Open Mechanical Engineering Journal, 2014, Volume 8 Guo and Diao

convergence trait, and the continuous dashed line stands for
the convergence trait of the algorithm in reference [9]. Our
experiments show that the present algorithm can indeed
increase the convergence speed of the algorithm.

4.2. Comparison of the Results of Optimizing the TSP
Problem

 Table 1 presents the comparison of the better results
obtained from solving the eil76 TSP problem. From Table 1
it can be seen that although the optimal result obtained from
using the present algorithm is short of the currently
published optimal result, it can been seen from Fig. (1) that
its convergence speed is obviously much faster than those of
the other two algorithms.
Table 1 Comparison of the better results of the eil76 TSP

problem.

Algorithm Result

ACS 543.578023

Algorithm in reference [9] 539.741359

Algorithm in proposed in the
present study

540.48414

Result published by website [10] 538

CONCLUSION

 Our experiments have shown that the method employed
by the present study is effective to increase the convergence
speed of the algorithm. However, the ACO algorithm is not
like the genetic algorithm which has a solid mathematical
basis and a systematic analyzing methodology. Besides, the
parameters involved in our experiments have no theory to
guide and the research findings obtained so far are mostly
based on experiments. Nevertheless, we can believe that the

ACO algorithm, like any other intelligent algorithm, will be
applied more and more widely in more fields and gradually
form its own theoretical basis.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

 Declared none.

REFERENCES
[1] Q. B. Zhu, and Z. J. Yang, “An ant colony optimization algorithm

based on mutation and dynamic pheromone updating”, J. Soft., vol.
15, no. 2, pp.185-192, 2004.

[2] L. Li, F. Qiao, and Q.D. Wu, “ACO-based multi-objective
scheduling of parallel batch processing machines with advanced
process control constraints”, Int. J. Adv. Manuf. Technol., vol. 44,
pp. 985-994, 2009.

[3] M. Mavrovouniotis, and S. Yang, “A memetic ant colony
optimization algorithm for the dynamic travelling salesman
problem”, Soft Comput., vol. 15, pp.1405-1425, 2011.

[4] J. Rivero, D. Cuadra, J. Calle and P. Isasi, “Using the ACO
algorithm for path searches in social networks”, Appl. Intell.,
vol.36, pp. 899-917, 2012.

[5] C. Rizk and J. Arnaout, “ACO for the surgical cases assignment
problem”, J. Med. Syst., vol. 36, pp.1891-1899, 2012.

[6] V.P. Vinay and R. Sridharan, “Taguchi method for parameter
design in ACO algorithm for distribution–allocation in a two-stage
supply chain”, Int. J. Adv. Manuf. Technol., vol. 64, pp.1333-1343,
2013.

[7] X. Chen, Y. Kong, and X. Fang, “A fast two-stage ACO algorithm
for robotic path planning”, Neural Comput. & Applic., vol. 22, pp.
313-319, 2013.

[8] J.E. Guo, S.T. Wang and H.L. Xu, “Amino acid sequence
alignment algorithm based on ant colony optimization genetic
algorithm”, Comput. Applic., vol. 27, Issue 6, pp. 1434-1437, 2007.

[9] M. Dorigo, and G. D. Caro, “Ant colony optimization: A new
meta-heuristic”, In: Proc. of the 1999 Congress on Evolutionary
Computation, vol 2, Washington: IEEE Press, pp.1470-1477, 1999.

[10] http://elib.zib.de/pub/Packages/mp-
testdata/tsp/tsplib/tsp/index.html

Received: November 11, 2013 Revised: February 11, 2014 Accepted: March 3, 2014

© Guo and Diao et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

