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Abstract: Existence of wormholes can lead to a host of new effects like Misner-Wheeler “charge without charge” effect, 

where without being generated by any source an electric flux arrives from one “universe” and flows into the other 

“universe”. Here we show the existence of an intriguing opposite possibility. Namely, a charged object (a charged 

lightlike brane in our case) sitting at the wormhole “throat” expels all the flux it produces into just one of the “universes”, 

which turns out to be of compactified (“tube-like”) nature. An outside observer in the non-compact “universe” detects, 

therefore, a neutral object. This charge-hiding effect takes place in a gravity/gauge-field system self-consistently 

interacting with a charged lightlike brane as a matter source, where the gauge field subsystem is of a special non-linear 

form containing a square-root of the Maxwell term and which previously has been shown to produce a QCD-like 

confining gauge field dynamics in flat space-time. 
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1. INTRODUCTION 

 Misner-Wheeler “charge without charge” effect [1] 
stands out as one of the most interesting physical phenomena 
produced by wormholes. Misner and Wheeler realized that 
wormholes connecting two asymptotically flat space times 
provide the possibility of existence of electromagnetically 
non-trivial solutions, where the lines of force of the electric 
field flow from one universe to the other without a source 
and giving the impression of being positively charged in one 
universe and negatively charged in the other universe. For a 
detailed account of the general theory of wormholes we refer 
to Visser's book [2] (see also [3, 4] and some more recent 
accounts [5-9]. 

 In the present paper we find the opposite effect in 
wormhole physics, namely, that a genuinely charged matter 
source of gravity and electromagnetism may appear 
electrically neutral to an external observer. Here we show 
this phenomenon to take place in a gravity/gauge-field 
system self-consistently coupled to a charged lightlike brane 
as a matter source, where the gauge field subsystem is of a 
special non-linear form containing a square-root of the 
Maxwell term. The latter has been previously shown [10-15] 
to produce a QCD-like confining (“Cornell” [16-18]) 
potential in flat space-time. In the present case the lightlike 
brane, which connects as a wormhole “throat” a non-
compact “universe” with a compactified “universe”, is 
electrically charged, however all of its flux flows into the  
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compactified (“tube-like”) “universe” only. No Coulomb 
field is produced in the non-compact “universe”, therefore, 
the wormhole hides the charge from an external observer in 
the latter “universe”. 

 Let us recall that lightlike branes are singular null 
(lightlike) hypersurfaces in Riemannian space-time which 
provide dynamical description of various physically 
important phenomena in cosmology and astrophysics such 
as: (i) impulsive lightlike signals arising in cataclysmic 
astrophysical events (supernovae, neutron star collisions) 
[20]; (ii) dynamics of horizons in black hole physics -- the so 
called “membrane paradigm” [21]; (iii) the thin-wall 
approach to domain walls coupled to gravity [22-25]. The 
gravity/gauge-field system with a square-root of the 
Maxwell term was recently studied in [26] (see the brief 
review in Section 2 below) where the following interesting 
new features of the pertinent static spherically symmetric 
solutions have been found: 

(i) appearance of a constant radial electric field (in 
addition to the Coulomb one) in charged black holes 
within Reissner-Nordström-de-Sitter-type and/or 
Reissner-Nordström- anti-de-Sitter-type space-times, 
in particular, in electrically neutral black holes with 
Schwarzschild-de-Sitter and/or Schwarzschild- anti-
de-Sitter geometry; 

(ii) novel mechanism of dynamical generation of 
cosmological constant through the nonlinear gauge 
field dynamics of the “square-root” Maxwell term; 

(iii) appearance of confining-type effective potential in 
charged test particle dynamics in the above black hole 
backgrounds. 
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 In Section 3 of the present paper we extend the analysis 

in [26] by finding new solutions of Levi-Civita-Bertotti-

Robinson type [27-29], i.e., with space-time geometry of the 

form M2 S2  with  M2  being a two-dimensional anti-de 

Sitter, Rindler or de Sitter space depending on the relative 

strength of the electric field w.r.t. coupling of the square-root 

Maxwell term. 

 In our previous papers [30-40] we have provided an 

explicit reparametrization invariant world-volume 

Lagrangian formulation of lightlike p -branes (a brief review 

is given in Section 4) and we have used them to construct 

various types of wormhole, regular black hole and lightlike 

braneworld solutions in D=4  or higher-dimensional 

asymptotically flat or asymptotically anti-de Sitter bulk 

space-times. In particular, in refs. [38-40] we have shown 

that lightlike branes can trigger a series of spontaneous 

compactification-decompactification transitions of space-

time regions, e.g., from ordinary compactified (“tube-like”) 

Levi-Civita-Bertotti-Robinson space to non-compact 

Reissner-Nordström or Reissner-Nordström-de-Sitter region 

or vice versa. Let us note that wormholes with “tube-like” 

structure (and regular black holes with “tube-like” core) have 

been previously obtained within different contexts in refs. 

[41-49]. 

 The essential role of the above mentioned proper world-
volume Lagrangian formulation of lightlike branes manifests 
itself most clearly in the correct self-consistent construction 
[34, 37] of the simplest wormhole solution first proposed by 
Einstein and Rosen [50] -- the Einstein-Rosen “bridge” 
wormhole. Namely, in refs. [34, 37] it has been shown that 
the Einstein-Rosen “bridge” in its original formulation [50] 
naturally arises as the simplest particular case of static 
spherically symmetric wormhole solutions produced by 
lightlike branes as gravitational sources, where the two 
identical “universes” with Schwarzschild outer-region 
geometry are self-consistently glued together by a lightlike 
brane occupying their common horizon -- the wormhole 
“throat”. An understanding of this picture within the 
framework of Kruskal-Szekeres manifold was subsequently 
provided in ref. [53], which involves Rindler's elliptic 
identification of the two antipodal future event horizons. 

 At this point let us strongly emphasize that the original 

notion of “Einstein-Rosen bridge” in ref. [50] is qualitatively 

different from the notion of “Einstein-Rosen bridge” defined 

in several popular textbooks (e.g., refs. [51, 52]) using the 

Kruskal-Szekeres manifold, where the “bridge” has dynamic 

space-time geometry. Namely, the two regions in Kruskal-

Szekeres space-time corresponding to the two copies of outer 

Schwarzschild space-time region ( r > 2m ) (the building 

blocks of the original static Einstein-Rosen “bridge”) and 

labeled (I )  and (III )  in ref. [51] are generally disconnected 

and share only a two-sphere (the angular part) as a common 

border (U = 0,V = 0  in Kruskal-Szekeres coordinates), 

whereas in the original Einstein-Rosen “bridge” construction 

[50] the boundary between the two identical copies of the 

outer Schwarzschild space-time region ( r > 2m ) is a three-

dimensional lightlike hypersurface ( r = 2m) . 

 In Section 5 below we consider self-consistent coupling 
of gravity/gauge-field system with a square-root of the 
Maxwell term to a charged lightlike brane, which will serve 
as a matter source of gravity and (nonlinear) 
electromagnetism. In this Section we derive the main result 
of the present paper -- wormhole-like solutions joining a 
non-compact “universe” to a compactified (“tube-like”) 
“universe” (of generalized Levi-Civita-Bertotti-Robinson 
type) via a wormhole “throat” realized by the charged 
lightlike brane, which completely hides its electric flux from 
an outside observer in the non-compact “universe”. This new 
charge “confining” phenomena is entirely due to the 
presence of the “square-root” Maxwell term. 

2. LAGRANGIAN FORMULATION. SPHERICALLY 
SYMMETRIC SOLUTIONS 

 We will consider the simplest coupling to gravity of the 

nonlinear gauge field system with a square-root of the 

Maxwell term known to produce QCD-like confinement in 

flat space-time [10-15]. The relevant action is given by (we 

use units with Newton constant GN =1 ): 

S = d 4x G
R(G)

16
+ L(F2 ) , L(F2 ) =

1

4
F2 f

2
F2 ,  (1) 

            F2 F Fμ G
μG , Fμ = μA Aμ .  

 Here R(G)  is the scalar curvature of the space-time 

metric Gμ  and 
 
G det Gμ ; the sign factor = ±1  in 

the square root term in (1) corresponds to “magnetic” or 

“electric” dominance; f  is a positive coupling constant. It is 

important to stress that we will not introduce any bare 

cosmological constant term. 

 Let us note that the Lagrangian L(F2 )  in (1) contains 

both the usual Maxwell term as well as a non-analytic 

function of F2
 and thus it is a non-standard form of 

nonlinear electrodynamics. In this way it is significantly 

different from the original purely “square root” Lagrangian 

f

2
F2  first proposed by Nielsen and Olesen [54] to 

describe string dynamics (see also refs. [55, 56]). The natural 

appearance of the “square-root” Maxwell term in effective 

gauge field actions was further motivated by `t Hooft [19] 

who has proposed that such gauge field actions are adequate 

for describing confinement (see especially Eq.(5.10) in [19]). 

He has in particular described a consistent quantum approach 

in which “square-root” gauge-field terms play the role of 

“infrared counterterms”. Also, it has been shown in first 

three refs. [10-15] that the square root of the Maxwell term 

naturally arises as a result of spontaneous breakdown of 

scale symmetry of the original scale-invariant Maxwell 

theory with f  appearing as an integration constant 

responsible for the latter spontaneous breakdown. 

 Let us also remark that one could start with the non-
Abelian version of the gauge field action in (1). Since we 
will be interested in static spherically symmetric solutions, 
the non-Abelian gauge theory effectively reduces to an 
Abelian one as pointed out in the ref. [10]. 
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 The corresponding equations of motion read: 

Rμ

1

2
Gμ R = 8 Tμ

(F ) ,  (2) 

where 

Tμ

(F ) = L(F2 )Gμ 4L' (F2 )Fμ F G ,  (3) 

and 

GL' (F2 )F Gμ G( )= 0, (4) 

where L' (F2 )  denotes derivative w.r.t. F2
 of the function 

L(F2 )  in (1). 

 In our preceding paper [26] we have shown that the 
gravity-gauge-field system (1) possesses static spherically 
symmetric solutions with a radial electric field containing 
both Coulomb and constant vacuum pieces: 

F0r =
F f

2
+

Q

4 r2
, F = sign(Q) ,  (5) 

and the space-time metric: 

ds2 = A(r)dt 2 +
dr2

A(r)
+ r2 (d 2

+
2sin d 2 ) ,  (6) 

A(r) = 1 8 |Q | f
2m

r
+
Q2

r2
2 f 2

3
r2 ,  (7) 

is Reissner-Nordström-de-Sitter-type with dynamically 

generated effective cosmological constant eff = 2 f 2 . 

 Appearance in (7) of a “leading” constant term different 

from 1 resembles the effect on gravity produced by a 

spherically symmetric “hedgehog” configuration of a 

nonlinear sigma-model scalar field with SO(3)  symmetry 

[57] (cf. also [58]). 

3. GENERALIZED LEVI-CIVITA-BERTOTTI-
ROBINSON SPACE-TIMES 

 Here we will look for static solutions of Levi-Civita-

Bertotti-Robinson type [27-29] of the system (2) -- (4), 

namely, with space-time geometry of the form M2 S2  

where  M2  is some two-dimensional manifold: 

ds2 = A( )dt 2 +
d 2

A( )
+ r0

2 (d 2
+

2sin d 2 ) ,

< < , r0 = const ,

 (8) 

and being: 

• either purely electric type, where the sign factor 

= 1  in the gauge field Lagrangian L(F2 )  (1): 

 Fμ = 0 for μ, 0, , F0 = F0 ( ) ;  (9) 

• or purely magnetic type, where = +1  in (1): 

 Fμ = 0 for μ, i, j , , 0Fij = Fij = 0 .  (10) 

 In the purely electric case (9) the gauge field equations of 
motion become: 

(F0
F f

2
) = 0 , F sign(F0 ) ,  (11) 

yielding a constant vacuum electric field: 

F0 = cF = arbitrary const .  (12) 

 The (mixed) components of energy-momentum tensor (3) 
read: 

T 0
(F )0 = T (F ) =

1

2
F0
2 , Tij

(F ) = gij (
1

2
F0
2 f

2
| F0 |) . (13) 

 Taking into account (13), the Einstein eqs. (2) for (ij) , 

where Rij =
1

r0
2 gij  because of the S2  factor in (8), yield: 

1

r0
2 = 4 F0

2 , i.e. r0 =
1

2 | cF |
.  (14) 

 The (00)  Einstein eq. (2) using the expression 

R0
0 =

1

2
2A  (ref. [59]; see also [60]) becomes: 

2A = 8 | cF || cF | 2 f( ) . (15) 

 Therefore, we arrive at the following three distinct types 
of Levi-Civita-Bertotti-Robinson solutions for gravity 
coupled to the non-Maxwell gauge field system (1): 

(i) AdS2 S2  with strong constant vacuum electric field 

| F0 |=| cF |> 2 f , where AdS2  is two-dimensional 

anti-de Sitter space with: 

 A( ) = 4 | cF | | cF | 2 f( ) 2
 (16) 

in the metric (8),  being the Poincare patch space-

like coordinate. 

(ii) Rind2 S2  with constant vacuum electric field 

| F0 |=| cF |= 2 f , where Rind2  is the flat two-

dimensional Rindler space with: 

 A( ) = for 0 < < or A( ) = for < < 0 (17) 

 in the metric (8). 

(iii) dS2 S2  with weak constant vacuum electric field 

| F0 |=| cF |< 2 f , where dS2  is two-dimensional de 

Sitter space with: 

 A( ) = 1 4 | cF | ( 2 f | cF |)
2

 (18) 

 in the metric (8). For the special value | cF |=
f

2
 we 

recover the Nariai solution [61, 62] with 

A( ) = 1 2 f 2 2
 and equality (up to signs) among 

energy density, radial and transverse pressures: 

= pr = p =
f 2

4
 (T (F )μ = diag ( , pr , p , p )).  
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 In all three cases above the size of the S
2
 factor is given 

by (14). Solutions (17) and (18) are new ones and are 
specifically due to the presence of the non-Maxwell square-
root term (with  = 1) in the gauge field Lagrangian (1). 

 In the purely magnetic case (10) the gauge field 
equations of motion (4): 

sin (1+
f

F2
)Fμ = 0  (19) 

yield magnetic monopole solution Fij = Br0
2 sin ij , where 

B = const , irrespective of the presence of the non-Maxwell 

square-root term. However, the latter does contribute to the 

energy-momentum tensor: 

T 0
(F )0 = T (F ) =

1

2
B2 f | B | , Tij

(F ) =
1

2
gijB

2 .  (20) 

 Taking into account (19), the Einstein eqs. (2) for (ij)  

yield (cf. (14)): 

1

r0
2 = 4 B2 + 2 f | B | , (21) 

whereas the mixed-component (00)  Einstein eq. (2) gives 
2A = 8 B2 . Thus in the purely magnetic case we obtain 

only one solution -- AdS2 S2  space-time with magnetic 

monopole where: 

A( ) = 4 B2 2
 (22)  

in the metric (8) and the size of the S2  factor is determined 

by (22). 

4. LAGRANGIAN FORMULATION OF LIGHTLIKE 
BRANE DYNAMICS 

 In what follows we will consider gravity/gauge-field 

system self-consistently interacting with a lightlike p -brane 

(LL-brane for short) of codimension one ( D = (p +1) +1 ). 

In a series of previous papers [30-40] we have proposed 

manifestly reparametrization invariant world-volume 

Lagrangian formulation in several dynamically equivalent 

forms of LL-branes coupled to bulk gravity Gμ  and bulk 

gauge fields, in particular, electromagnetic field Aμ . Here 

we will use our Polyakov-type formulation given by the 

world-volume action: 

SLLq =
1

2
d p+1 Tb0

p 1

2 abgab b0 (p 1) ,  (23) 

 
gab aX

μGμ bX
1

T 2 ( au + qAa )( bu + qAb ) , Aa aX
μAμ .  (24) 

 Here and below the following notations are used: 

• ab  is the intrinsic Riemannian metric on the world-

volume with 
 
= det ab ; gab  is the induced 

metric on the world-volume: 

 gab aX
μGμ (X) bX ,  (25) 

 which becomes singular on-shell (manifestation of 

the lightlike nature), cf. Eq. (29) below); b0  is a 

positive constant measuring the world-volume 

“cosmological constant”. 

• X μ ( )  are the p -brane embedding coordinates in 

the bulk D -dimensional space-time with Riemannian 

metric Gμ (x)  (
 
μ, = 0,1,…,D 1 ); ( ) 0 , i )  

with  i=1,..., p; a a .  

• u is auxiliary world-volume scalar field defining the 
lightlike direction of the induced metric (see Eq.(29) 
below) and it is a non-propagating degree of freedom 
(ref.[40]). 

• T is dynamical (variable) brane tension (also a non-
propagating degree of freedom). 

• Coupling parameter q is the surface charge density of 
the LL-brane. 

 The corresponding equations of motion w.r.t. X
μ
, u, ab 

and T read accordingly (using short-hand notation (24)): 

a (T | g |gab
bX

μ )  + +T | g |gab
bX aX

μ
 

+
q

T
| g |gab

aX ( bu + qAb )F Gμ
= 0.  (26)  

a

1

T
| g |gab ( bu + qAb ) = 0, ab =

1

b0
gab .   (27)  

T 2
+ gab

au + qAa( ) bu + qAb( ) = 0.  (28)  

 Here 
 
g = det gab  and 

μ
 denotes the Christoffel 

connection for the bulk metric Gμ . 

 The on-shell singularity of the induced metric gab  (25), 

i.e., the lightlike property, directly follows Eq. (4) and the 

definition of gab  (24): 

gabg
bc ( cu + qAc ) = 0.  (29) 

 Explicit world-volume reparametrization invariance of 

the LL-brane action (23) allows to introduce the standard 

synchronous gauge-fixing conditions for the intrinsic world-

volume metric 
 00 = 1 , 0i = 0 (i =1,…, p) . which reduces 

Eqs. (27) -- (28) to the following relations: 

( 0u + qA0 )
2

T 2 = b0 + g00 , iu + qAi = ( 0u + qA0 )g0i (b0 + g00 )
1,  

 

g00 = g
ijg0ig0 j , 0 g( p)( ) + i g( p)gijg0 j( ) = 0, g( p) det gij ,  (30) 

(recall that g00 , g0i , gij  are the components of the induced 

metric (25); gij  is the inverse matrix of gij ). Then, as shown 

in refs. [30-40], consistency of LL-brane dynamics in static 

“spherically-symmetric”-type backgrounds (in what follows 

we will use Eddington-Finkelstein coordinates, 

dt = dv
d

A( )
): 
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ds2 = A( )dv2 + 2dvd + C( )hij ( )d
id j , Fv = Fv ( ) , rest = 0  (31) 

with the standard embedding ansatz: 

X 0 v = , X1 = ( ) , Xi i = i (i =1,…, p) .  (32) 

requires the corresponding background (31) to possess a 

horizon at some = 0 , which is automatically occupied by 

the LL-brane, i.e.: 

( ) = 0 , A( 0 ) = 0 .  (33) 

 This property is called “horizon straddling” according to 
the terminology of Ref. [23]. Similar “horizon straddling” 
has been found also for LL-branes moving in rotating axially 
symmetric (Kerr or Kerr-Newman) and rotating cylindrically 
symmetric black hole backgrounds [36, 37]. 

5. SELF-CONSISTENT WORMHOLE-LIKE SOLUT-
IONS WITH LL-BRANES 

 Let us now consider a bulk gravity/gauge-field system in 

D=4  (1) self-consistently interacting with a p = 2  LL-

brane: 

S = d 4x G
R(G)

16

1

4
F2 f

2
F2

+ SLL q[ ] ,  (34) 

where SLL q[ ]  is the LL-brane world-volume action (23) 

(with p = 2 ). It is now the LL-brane which will be the 

material and charge source for gravity and (nonlinear) 

electromagnetism. 

 The equations of motion resulting from (34) read: 

Rμ

1

2
Gμ R = 8 Tμ

(F )
+ Tμ

(brane) ,  (35) 

G (1
f

F2
)F Gμ G + j(brane)

μ = 0 ,  (36) 

together with the LL-brane equations (26) -- (28). Tμ

(F )
 is the 

same as in (3). The energy-momentum tensor and the charge 

current density of the LL-brane are straightforwardly derived 

from the underlying world-volume action (23): 

T(brane)
μ = d 3

(4) (x X( ))

G
T | g |gab

aX
μ

bX ,  (37) 

 
j(brane)
μ = q d 3 (4) (x X( )) | g |gab

aX
μ ( bu + qAb )T

1
 (38) 

 Looking for solutions of static “spherically-symmetric”-
type (31) for the coupled gravity-gauge-field-LL-brane 
system (34) amounts to the following simple steps: 

(i) Choose “vacuum” static “spherically-symmetric”-

type solutions (31) of (35) -- (36) (i.e., without the 

delta-function terms due to the LL-branes) in each 

region < < 0  and 0 < <  with a common 

horizon at = 0 ; 

(ii) The LL-brane automatically locates itself on the 
horizon according to “horizon straddling” property 
(33); 

(iii) Match the discontinuities of the derivatives of the 

metric and the gauge field strength (31) across the 

horizon at = 0  using the explicit expressions for 

the LL-brane stress-energy tensor charge current 

density (37) -- (38). 

 Using (30) -- (32) we find for the LL-brane energy-
momentum tensor and charge current density: 

 
T(brane)

μ = Sμ ( 0 ) , j(brane)
μ = 0

μq det Gij ( 0 ) ,  (39) 

where Gij = C( )hij ( )  (cf. (31)). The non-zero components 

of the surface energy-momentum tensor Sμ  (with lower 

indices) and its trace are: 

S =
T

b0
1/2 , Sij = Tb0

1/2Gij , S = 2Tb0
1/2 .  (40) 

 Taking into account (39) -- (40) together with (31) -- 

(33), the matching relations at the horizon = 0  become 

[38-40] (for a systematic introduction to the formalism of 

matching different bulk space-time geometries on 

codimension-one hypersurfaces (“thin shells”) see the 

textbook [63]): 

(A) Matching relations from Einstein eqs. (35): 

 A
0
= 16 T b0 , lnC

0
=

8

b0
T  (41) 

with notation Y
0

Y |
0+0

Y |
0 0  for any quantity Y . 

(B) Matching relation from nonlinear gauge field eqs. 
(32): 

 F
0
= q  (42) 

(C) X 0
-equation of motion of the LL-brane (the only 

non-trivial contribution of second-order LL-brane 

eqs. (26) in the case of embedding (32)): 

 
T

2
A

0
+ 2b0 lnC

0
b0q F

0
= 0  (43) 

 with notation Y
0

1

2
Y |

0+0
+Y |

0 0( ).  

 We are looking for wormhole-type solutions to (34) with 
the charged LL-brane at the wormhole “throat” connecting a 
non-compact “universe” with Reissner-Nordstr¨om-de-
Sitter-type geometry (5)–(7) (where the cosmological 
constant is dynamically generated) to a compactified (“tube-
like”) “universe” of (generalized) Levi-Civita-Bertotti-
Robinson type (8)–(9). These wormholes possess the novel 
property of hiding electric charge from external observer in 
the non-compact “universe”, i.e., the whole electric flux 
produced by the charged LL-brane at the wormhole “throat” 
is pushed into the “tubelike” “universe”.  

 The first wormhole-type solution of the above kind we 
find is given by: 

(a) “left universe” of Levi-Civita-Bertotti-Robinson 
(“tube-like”) type with geometry Rind2  S

2
 (17): 
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 A( ) = , C( ) = r0
2 , | Fv |= 2 f for < 0 ;   (44) 

(b) non-compact “right universe” comprising the exterior 

region of Reissner-Nordström-de-Sitter-type black 

hole beyond the middle (Schwarzschild-type) horizon 

0r  (cf. (5) -- (7)): 

 A( ) = 1 8 |Q | f
2m

r0 +
+

Q2

(r0 + )2
2 f 2

3
(r0 + )2 ,  

 A(0) = 0 , A(0) > 0 ,  

 C( ) = (r0 + )2 , Fv =
F f

2
+

Q

4 (r0 + )2
for > 0 .  (45) 

 Substituting (44) -- (45) into the set of matching 

relations (41) -- (43) determines all parameters of the 

wormhole (r0 ,m,Q,b0 ,q)  in terms of the coupling 

constant f in front of the square-root Maxwell term in 

(34): 

 Q = 0 , | q |=
f

2
, sign(q) = sign(Fv ) ,  (46)  

 r0
2 =

1

8 f 2
, m =

11

48 2 f
, b0 =

1

8 2 f
+
3

16
. (47) 

 The second wormhole-type solution of the 
aforementioned kind reads: 

(c) “left universe” of Levi-Civita-Bertotti-Robinson 

(“tube-like”) type with geometry AdS2 S2  (16): 

 
A( ) = 4 | cF | | cF | 2 f( ) 2 , C( ) = r0

2 ,

| F |=| cF | > 2 f for < 0;
 (48) 

(d) non-compact Reissner-Nordström-de-Sitter-type “right 
universe” of the same kind as (45). 

 Substituting again (48), (45) into the matching 
relations (41) -- (43) we find for the wormhole 
parameters: 

 Q = 0 , | cF |=| q | +
f

2
, sign(q) = sign(Fv ) sign(cF ) ,  (49) 

 r0
2 =

1

4 cF
2 , m =

1

2 f
1

f 2

6cF
2 , b0 =

q q + 2 f( )
4cF

2  (50) 

 The important observation here is that Q = 0  in both 

wormhole solutions (a)-(b) (Eqs. (44) -- (45), (46) -- (47) and 

(c)-(d) (Eqs. (48), (45), (49) -- (50). Therefore, the “right 

universe” in both cases turns out to be the exterior region of 

the electrically neutral Schwarzschild-de-Sitter black hole 

beyond the Schwarzschild horizon which carries a vacuum 

constant radial electric field | Fv |=
f

2
. On the other hand, 

according to (45), (46) and (45), (49) the whole flux 

produced by the LL-brane charge q  ( | Fv |=
f

2
+ | q | ) 

flows only into the compactified “left universe” of Levi-

Civita-Bertotti-Robinson type ( Rind2 S2  (17) or 

AdS2 S2  (16)). 

 The geometry of the above constructed charge-”hiding” 
wormhole solutions is illustrated in Fig. (1). 

 

Fig. (1). Shape of t = const  and =
2

 slice of charge-”hiding” 

wormhole geometry. The whole electric flux is expelled into the 
lower (infinitely long) cylindric tube. 

CONCLUSIONS 

 We have seen that a charged wormhole “throat” realized 
by a charged lightlike brane, when joining a compactified 
space-time with a non-compact space-time region, expels all 
of the electric flux it produces into the compactified (“tube-
like”) region when the gauge field dynamics is driven by an 
additional “square-root” Maxwell term known to produce 
QCD-like confining potential in flat space-time. Indeed, this 
effect can be understood from the point of view of an 
observer in the non-compact “universe” as an alternative 
way of achieving charge confinement in a fashion similar to 
the MIT bag model [64], where the role of the inside bag 
region is being played by the compactified Levi-Civita-
Bertotti-Robinson space. 

 In an accompanying paper [65] we show that the above 

“charge-hiding” solution can be further generalized to a truly 
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charge-confining wormhole solution when we couple the 

bulk gravity/nonlinear-gauge-field system (1) self-

consistently to two separate codimension-one charged 

lightlike branes with equal in magnitude but opposite 

charges. The latter system possesses a “two-throat” 

wormhole solution, where the “left-most” and the “right-

most” “universes” are two identical copies of the exterior 

region of the neutral Schwarzschild-de-Sitter black hole 

beyond the Schwarzschild horizon, whereas the “middle” 

“universe” is of generalized Levi-Civita-Bertotti-Robinson 

“tube-like” form with geometry dS2 S2  (3). It comprises 

the finite-extent intermediate region of dS2  between its two 

horizons. Both “throats” are occupied by the two oppositely 

charged lightlike branes and the whole electric flux produced 

by the latter is confined entirely within the middle finite-

extent “tube-like” “universe” -- a property qualitatively 

resembling the quark confinement phenomenon in quantum 

chromodynamics. 
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