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Abstract: As is well known that sensing and measuring the weld pool surface is very important to design intelligent weld-

ing machines which is able to imitate a skilled human welder who can choose suitable welding parameters. Therefore, in 

this paper, we concentrate the problem of weld pool surface 3D reconstruction, which is a key issue in intelligent welding 

machines development. Firstly, the framework of the weld pool surface 3D reconstruction system is described. The weld 

pool surface 3D reconstruction system uses a single camera stereo vision system to extract original data from weld pool, 

and then the left and right image are collected. Afterwards, we utilize Pixel difference square and matching algorithm and 

Stereo matching algorithm to process images. Next, the 3D reconstruction of weld pool surface is constructed using the 

point cloud data. Secondly, stereo matching based weld pool surface 3D reconstruction algorithm is illustrated. In this al-

gorithm, the matching cost function is computed through the Markov random field, and then the weighted matching cost 

is calculated via the guided filter. Thirdly, to test the performance of our proposed algorithm, we develop an experimental 

platform to measure weld pool width, length, convexity and the previous inputs based on a linear model predictive con-

troller. Experimental results demonstrate that the proposed 3D reconstruction algorithm of weld pool surface can achieve 

high quality under both current disturbance and speed disturbance. 
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1. INTRODUCTION 

Currently, manufacturing industry of welding product 
needs the mode of automation and intelligent, and it also 
requires precise control of weld penetration with the widely 
utilized of welding robot [1]. In recent years, some skilled 
welders observe the surface of weld pool using eyes and 
choose weld parameters based on the penetration state in-
formation, however this mode is not accurate [2]. Different 
from the human operations, we can introduce the vision sen-
sors to extract 3D topography information instead of human 
operations to optimize the weld parameters [3]. 

Sensing and measuring the weld pool surface is of great 
importance to develop intelligent welding machines which is 
able to imitate a skilled human welder who can choose suit-
able welding parameters (for example welding current, speed, 
arc length, and so on) [4]. As is well known that Weld pool is 
made up of weld status, e.g. weld defects and penetration. 
Therefore, 3D reconstruction of weld pool surface is very 
complex problem welding research and construction [5, 6]. It 
is very important for developing the next generation intelligent 
welding machines. Additionally, estimating the weld joint 
penetration in automatic welding is very interesting [7, 8]. 
Therefore, in this paper, the images of front-side free surface 
and back-side width of the weld pool are synchronously 
sensed by two different CCD cameras are welding process 
using the laser vision, and then the 3D weld pool surface can 
be reconstructed utilized our proposed algorithm [9]. 

 

Particularly, in recent years, there are four main types of 
3D weld pool surface reconstruction methods [10], in the 
following parts, we will discuss them.  

Type 1: Model based reconstruction: The 3D weld pool 
surface is partially reconstructed with 2D weld pool images 
utilizing a simple method, and it only requires estimating the 
height of the weld bead at the rear of the weld pool. 

Type 2: Stereovision measurement: using this method, 
3D weld pool surface is reconstructed utilizing the two weld 
pool images. 

Type 3: Shape from shading reconstruction 3D weld pool 
reconstruction algorithms have also been proposed using 
shape from shading approach. 

Type 4: Structured-light based sensing: In this frame-
work, an iterative approach is developed to reconstruct the 
3D weld pool surface. 

As is shown Fig. (1), two examples of weld pools are 
given. 
 

 

Fig. (1). Examples of weld pools. 
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The rest of the paper is organized as follows. Section 2 il-
lustrates related works about Stereo Matching. In section 3, 
framework of the weld pool surface 3D reconstruction sys-
tem is discussed. In section 4, Stereo matching based weld 
pool surface 3D reconstruction is proposed. Section 5 gives 
experimental results and related analysis. Finally, the con-
clusions are drawn in section 6. 

2. RELATED WORKS 

The main innovations of this paper lie in that stereo 

matching is utilized to solve the weld pool surface 3D recon-

struction problem. Vision is an important mode to discover 

and obtain our world for persons, almost 75 percent of hu-

man's information are collected from eyes. Stereo vision 

refers to a subject on how to understand and perceive the 

objective world by machine rather than human beings. That 

is to say, visual stereo matching is belonged to one of the 

fundamental and significant problems in the computer vi-

sion. Afterwards, we will show the related works about the 
applications of Stereo Matching 

Kim et al. present a new DCT-based local binary descrip-

tor for the dense matching of multiple views stereo. To solve 

these problems effectively, in the proposed dense descriptor, 

2D DCT-based local features are exploited to obtain high 
discriminative power even for the non-salient regions [11].  

Raghavendra et al. proposes an anchor-diagonal-based 

shape adaptive support region construction for the problem 

of stereo matching. The proposed algorithm dynamically 

makes up local support region, and the aggregated matching 

cost is utilized for Normalized Cross-Correlation-based simi-
larity estimating [12].  

Yang et al. proposed a non-local solution for the cost ag-

gregation issue. The matching cost values are aggregated 

adaptively using pixel similarity on a tree structure obtained 

from the stereo image pair to hold depth edges. The nodes of 

this tree are all the image pixels, and the edges are all the 

edges between the nearest neighboring pixels. The similarity 

between any two pixels is represented as the shortest dis-
tance on the tree [13]. 

Shi et al. proposes a new high-accuracy stereo matching 

policy using adaptive ground control points. Apart from the 

existing fixed GCP-based approaches, we use color dissimi-

larity, spatial relation, and the pixel-matching reliability to 

choose GCP adaptively in each local support window. In 

order to reduce the global energy, the authors developed a 

practical solution, which is denoted as alternating updating 

method of disparity and confidence map, that is able to ef-

fectively eliminate the redundant and interfering information 

of unreliable pixels [14].  

Mozerov et al. propose to execute stereo matching as a 
two-phase energy-minimization method. The authors intro-
duce 2 Markov random field models. The first on is a fully 
connected model defined on the complete set of pixels in an 
image, and the second one is a conventional locally con-
nected model. The authors tackle the energy-minimization 
problem for the fully connected model [15].  

Xu et al. propose a radiometrically invariant stereo 
matching algorithm which is named Optimal Local Adaptive 
Radiometric Compensation. In this algorithm, this paper 
approximates the spatially varying Pixel Value Correspon-
dence Function between a corresponding pixel pair as a lo-
cally consistent polynomial in an optimal local adaptive 
window [16]. 

Zhu et al. proposed a new local stereo matching approach 
which is radiometric invariant. The main innovation of this 
paper lies in that it uses a combined matching cost of inten-
sity and gradient based similarity measure. Furthermore, 
they developed an adaptive cost aggregation scheme via con-
structing an adaptive support window for each pixel, which 
can solve the boundary and low texture problems [17]. 

Inspired by the above works, in this paper, we propose a 
novel 3D reconstruction algorithm of weld pool surface us-
ing the Stereo matching approach. 

3. FRAMEWORK OF THE WELD POOL SURFACE 
3D RECONSTRUCTION SYSTEM 

In this section, the framework of the weld pool surface 
3D reconstruction system is given (shown in Fig. 2). 

As is shown in Fig. (2), the weld pool surface 3D recon-
struction system utilizes the single camera stereo vision sys-
tem to obtain original data from weld pool, and then the left 
and right images are constructed. Next, using the filtering 
process, left and right images is processed by two algorithm, 
that is, 1) Pixel difference square and matching algorithm 
and 2) Stereo matching algorithm. Finally, the 3D recon-
struction of weld pool surface is constructed by point cloud 
data which is made up of time difference map using camera 
parameters. 

Next, we will discuss how to convert a same point from 
pixel to millimeter unit, and the method is defined as fol-
lows. 

u =
x

dx
+ u

0
  (1) 

v =
y

dy
+ v

0
  (2) 

Then, the above representation can be defined as follows. 
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1
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Fig. (2). Framework of the weld pool surface 3D reconstruction system. 
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where R  is a 3 3  orthogonal matrix and t  denotes a 
translation vector 

4. STEREO MATCHING BASED WELD POOL SUR-
FACE 3D RECONSTRUCTION 

To implement the Stereo matching based weld pool 
surface 3D reconstruction, the guided filter is illustrated in 
advanced. Afterwards, the matching cost function is 
calculated using the Markov random field, and then the 
weighted matching cost is computed using the guided filter. 
For a given gray image, the kernel weight of a pixel is 
defined as follows. 

Wij =
1

w
2

1+
Ii uk( ) I j uk( )

k

2
+k i, j( ) wk

  (5) 

where i  and j  denote the indexes of pixels, parameters 
u
k

 and 
k

2
 are the mean and variance of the image I  in w

k
, 

and parameter  is a regularization value. 

Then, for the color images, the weight in Eq. 5 can be re-
defined as follows. 

Wij =
1

w
2

1+ Ii uk( )
T

k + U

1

I j uk( )
k i, j( ) wk

  (6) 

Using this rule, the guided filter refers to an edge pre-
serving smoothing filter. Therefore, an optimal disparity map 
can obtain higher quality. 

The aim of the stereo matching process is to compute the 
disparity for each pixel. Supposing that there are two images, 
that is, the left image I

l
 and the right image I

r
, particularly, 

I
l
 is used as the reference image. Based on the Markov ran-

dom field, the disparity set is represented as 

 
L
d
= l

1
, l
2
, l
3
, , l

M{ } . Furthermore, stereo matching denotes 
the process of calculating the correct disparity value l L

d
 

for the pixel using the coordinate x, y( ) . Hence, the absolute 
luminance difference is represented as the following equa-
tion. 

C
SAD i,l( ) =

I
r j+l( ) I

l j( )
j N i( )

P Q
  (7) 

Next, the difference of absolute gradient is defined as fol-
lows. 

C
GRAD i,l( ) =

x Ir j+l( ) x Il j( )
j N i( )

P Q
  (8) 



3D Reconstruction Algorithm of Weld Pool Surface The Open Petroleum Engineering Journal, 2015, Volume 8    437 

where I  refers to the luminance of the pixel, and the 
symbol N

i( )  means the set of pixels in a specific window 
which is located at the pixel x, y( ) , P Q  means the size of 
a window. In addition, 

x
 represents the gradient operation 

of the horizontal direction. Based on the above analysis, the 
matching cost function is defined as follows. 

CF
i,l( ) = 1( ) min C

SAD i,l( ) , 1
+ C

GRAD i,l( ) , 2   (9) 

where  is ranged in 0,1( )  means a harmonic coeffi-
cient, which is utilized to balance the luminance and gradient 
difference. 

Afterwards, the final weighted matching cost function is 
defined as follows. 

CF
i,l( )
*

= Wi, j Il( ) CF j ,l( )
i

  (10) 

where the symbol Wi, j  refers to a weight factor. 

Then, using the cost function which is defined in Eq. 10, 
the disparity related to the min or max cost can be chosen at 
the pixel level. 

l
i
= argmin

l

CF
i,l( )
*

  (11) 

Hence, disparity of each pixel is computed by Eq. 11, and 
the original disparity map can be calculated as well. 

5. EXPERIMENT 

Before presenting the experimental results, experimental 
platform is provided in Fig. (3). This experimental platform 
is able to measure weld pool width, length, convexity and the 
previous inputs are utilized by the linear model predictive 
controller. Afterwards, the calculated welding cur-

rent/welding speed is exploited to the welding process to 
obtain a specific3D weld pool state. Particularly, the arc 
length is set to 5mm in the following experiments. 

5.1. Experiment 1: Current Disturbance 

In this scheme, the robustness of the control algorithm 
against current disturbances is provided. The set points in 
this scheme we used are 5mm, 0.4mm, 0.2mm for the width 
of weld pool, length, and convexity respectively. Afterwards, 
the artificial error between the computed and utilized values 
of the welding current is exploited. In particular, the initial 
current is 54A and the initial welding speed is set to 
1.1mm/s. Additionally, in the first forty seconds, in the open-
loop period, there are no errors between the computed cur-
rent and utilized current. Therefore, the controller can let the 
weld pool width to 5mm, the length to 4mm and the convex-
ity to 0.2mm. Then, input parameters with time varying in 
experiment 1 is provide in Fig. (4). 

Afterwards, we set the weld pool width, length and con-
vexity to 3.5mm, 4mm and 0.19mm respectively, and then 
weld pool parameters with time varying in experiment 1 is 
shown in Fig. (5), where, the current disturbance is also out-
side the input range chosen for the model can represent the 
intended normal. 

5.2. Experiment 2: Speed Disturbance 

In scheme 2, an artificial error between the actual and 
calculated values of the welding speed is exploited to evalu-
ate the robustness of the proposed control algorithm against 
welding pool speed disturbances. In particular, the initial 
current 54A and the initial welding speed is set to 1.1mm/s, 
and then the width, length, and convexity of weld pool char-
acteristic parameter are set to 4mm, 3.5mm, and 0.2mm re-

Fig. (3). Experimental Platform of this experiment.
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spectively. Then, input parameters with time varying in ex-
periment 2 are shown in Fig. (6). 
 

 

Fig. (4). Input parameters with time varying in experiment 1. 

 

 

Fig. (5). Weld pool parameters with time varying in experiment 1. 
 

 

Fig. (6). Input parameters with time varying in experiment 2. 

 

On the other hand, weld pool parameters with time vary-
ing in experiment 2 is given in Fig. (7). The weld pool width, 
length, and convexity are set to 5.2mm, 5.4mm, and 
0.28mm, respectively. Then, we can see that the controller 
can solve the problem of the disturbance through decreasing 
the welding current to nearly 54A. 

Fig. (7). Weld pool parameters with time varying in experiment 2. 

Combining all the above experimental results together, 
the conclusions can be drawn that the proposed 3D recon-
struction algorithm of weld pool surface can achieve high 
quality when 3D weld pool surface geometry when different 
disturbances occur. 

CONCLUSION 

This paper focuses on the problem of weld pool surface 
3D reconstruction, which is a key issue in intelligent welding 
machines development. The weld pool surface 3D recon-
struction system uses a single camera stereo vision system to 
extract original data from weld pool, and then the left and 
right image are collected. In addition, the 3D reconstruction 
of weld pool surface is constructed using the point cloud data 
based on stereo matching. To implement the stereo matching 
process, the matching cost function is computed through the 
Markov random field, and then the weighted matching cost 
is calculated based on the guided filter. Experimental results 
verify the effectiveness of our proposed algorithm. 
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