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Abstract: Unconventional reservoirs are keys to oil and gas exploration and development, 

especially shale gas reservoirs. Discriminated shale gas reservoir lithofacies are, in particular, 

a primary problem in shale gas reservoir engineering. The mineral composition will affect 

both absorbed and free gas contents, therefore their identification is important. The mineral 

composition is one part of lithofacies. The shale content has always been used in previous 

lithological identifications: this method is effective in sand reservoirs; however, it is not 

suitable for use in shale gas reservoirs. This paper takes No.7 section in Yanchang formation 

in Ordos basin as an example. Through a lithological analysis, it was concluded that overlap 

method and cross-plot method are not also inappropriate for shale gas reservoirs. The Ordos 

basin shale gas reservoir is divided into seven lithofacies. We form a mathematical method 

and apply it to shale gas reservoirs using the shale volume and lgR which are available from 

conventional well logging and reflect organic matter in the processed dataset. Decision tree is 

used here. However, there were too many parameters to discriminate all lithofacies precisely. 

Principal component analysis (PCA) is a technique used to reduce multidimensional data sets 

to lower dimensions for analysis. This technique can be useful in petro-physics and geology 

as a preliminary method of combining multiple logs into a single entity or two logs without 

losing information. Combining PCA and a decision tree algorithm, the lithofacies of a shale 

gas reservoir were accurately discriminated. 
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1 Introduction 

In the mid-late period of oil and gas field development, unconventional reservoirs are 

important for increasing hydrocarbon reserves and production. Shale gas reservoirs are an 



important exploration direction for unconventional reservoir engineering. Shale gas reservoirs 

are self-generating and self-accumulating. Their stratification comprises fine mixtures 

composed of organic matter, hydrocarbons, and rock debris, therefore any physical analysis 

and testing thereof is complicated. This brings significant challenges and opportunities to 

identify, evaluate, and predict the productivity of shale gas reservoirs. Shale gas reservoirs are 

characterized by low porosity and low permeability and lithology thereof is quite different 

from that of conventional reservoirs. So exactly identifying the lithological characteristics of 

such reservoirs may provide the basis for further research and development of shale gas 

reservoirs. 

Various studies have found that for shale deposits with laminations, sand and shale 

inter-laminar strata are an important reservoir space [1]. For shale reservoirs, it is not enough 

to calculate the shale content alone. Firstly, in addition to shale sections with high shale 

contents, shale reservoirs also include shale inter-laminar sections. These layers cannot be 

recognised when only calculating the shale content. Shale with laminations contributes more 

to the reservoirs than mudstone. So exactly identifying the formation lithology, composition, 

and structure, of internal minerals is a key to productive shale gas exploration. According to 

research from the US National Petroleum Council, using geochemical analysis combined with 

logs represents an important direction for future development [2]. Accurately identifying layer 

lithofacies can greatly improve the success rate of shale gas reservoir developments. 

Currently, due to the development cost, the amount of drilling logs is limited and is unable to 

meet the requirements of modern shale gas exploration. Logs contain a wealth of geological 

information[3-9]. Using this geophysical method to identify lithologies has high accuracy and 

low costs. So, this research focusses on the indentification of the lithofacies of shale gas 

reservoirs through the features contained in geophysical logs. 

The research takes the Yanchang formation of triassic period in the south-eastern Ordos Basin 

as an example (Fig.1): previous research and field tests show that this area has lacustrine shale 

gas accumulation conditions. This lacustrine deposit was also multi-level, multi-type, 

evolutionary, with miscellaneous other phenomena present (Fig.2). Some experts suspect that 

lacustrine deposits do not have widespread shale gas development and exploitable shale gas 

exploration potential [10]. Despite the development potential, marine shale gas reservoirs are 

not preferred by those experts. However, based on the investigation of shale gas wells in the 

south-eastern Ordos Basin, Zhang had analysed shale gas accumulation features, shale gas 

generation and accumulation mechanisms, and its enrichment [11-13]. Xu studied the Ordos 

Basin shale gas and considered the claystone of the Yanchang formation to be widely 

distributed [14]. The thickness of the shale, and its organic carbon content, are higher; thermal 

evolution is moderate and gas measurement shows activity. Shale fractures are well 



developed, and its shale gas resource potential is significant. So, the south-eastern region of 

the Yanchang formation in the Ordos Basin is a shale gas range with potential profitability 

(indeed data suggest it represents an improvement over some marine shale deposits). In April 

2011, to review LP177 Well changes, seven sections of the shale strata were pressure-tested 

(yielding a daily volume of 2350 m
3
 of natural gas) thus making the first lacustrine shale gas 

well in the world. Many wells have been subsequently fractured successfully and industrial 

gas-flows obtained therefrom. From then on, it formed a prelude to a lacustrine shale gas 

development revolution in China. Unlike extensive research into marine shale gas deposits, 

lacustrine shale gas engineering can call upon no previous experience. In the process of 

exploration and operation, engineers are confronted with multiple challenges. Therefore, the 

establishment of a set of continental facies identification methods for shale gas was urgently 

required. 

This research analysed the characteristics of a terrestrial shale gas reservoir. Firstly, cross-plot 

and curve over-play methods were used to identify the lithofacies therein. However, these 

conditional methods could not evaluate the lithofacies accurately. Using principal component 

analysis (PCA), the relevant parameters were obtained therefrom. Then, a decision tree 

algorithm was used to discriminate between the lithofacies using PCA parameters. 

2 Well-logging response characteristics of the lithofacies 

Shale gas reservoirs are not the unique source of black shale. All tight microclastic rocks, 

which are rich in organic material, and where gas is present in both absorbed and free forms, 

are effectively shale gas reservoirs. Shale gas reservoirs have complex mineral compositions. 

The chosen research area contains quartz, feldspar, clay minerals, small amounts of calcite 

and dolomite, pyrite, and occasionally siderite. The mineral compositions vary greatly 

between wells and in different layers. Well-logging response characteristics are always 

affected by lithology and mineral composition. This research is committed to analyzing wells 

through different lithologies and will be beneficial for identifying future exploitable reservoirs. 

Lithofacies, a part of the sedimentary facies, are always used in oil geology, especially in 

stratigraphy and sedimentology. Lithofacies have a direct relationship with mineral and 

organic contents of strata. 

Through XRD and organic matter pyrolysis experiments, the sedimentary lithofacies were 

divided into fine sandstone (F S), siltstone (S S), sand and shale inter-laminae with more shale 

(S & S(sh)), sand and shale inter-laminae with more sand (S & S(sa)), mudstone (M S), 

organic-rich black shale(B S), and ash tuff (A S). 



 

Fig.1 Research area location map 
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Fig.2 The stratigraphy of research area 

Here, box-and-whisker plots were used to represent the lithology and the diversity of the 

different lithofacies and their logging response characteristics. Box and whisker plot contain 

six data nodes: a set of data is arranged from large to small and the upper limb, upper quartile, 

median lower quartile, lower edge, and some other outliers were calculated and shown 

therewith. From the acoustic time log and neutron porosity log, it may be seen from Fig. 3 

that there were obvious differences between the black shale and other rocks. Siltstone and fine 

sandstone were also easily distinguished from other rocks, but the gaps between them were 

small. Though most of lithologic characteristics of ash tuff were the same as those of other 

rocks, the radiation signature of the ash tuff was strong. Although a lot of differences were 

found between S & S(sh) and S & S(sa), there was still an overlapping area in the single 

logging curve. From the box and whisker plots of deep and shallow resistivity, the resistivity 

of fine sandstone, siltstone, ash tuff, S & S(sh), and S & S(sa) were all between 30 and 1000 

·m. Figure 1 showed that mudstone had a low resistivity, and that shale had a high 

resistivity here. Because the shale was fine-grained and lacking in organic matter, it formed a 

well-developed conductive network. 
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Fig.3 Well logging response characteristics of Terrestrial deposit shale gas reservoir lithofacies 

3 Lithofacies identification 

3.1 Traditional identification methods 

3.1.1 Qualitative identification 

According to the logging curve characteristics of different rock types in the study area, we 

identified the rock types from well-logging features such as AC, RT, and other logging curves. 

GR reflected the total shale content, the permeability of rock could be deduced through SP, 

AC indicated the total porosity, and the resistivity was indicated by RT. According to the 

aforementioned characteristics, we can identify the rock types in each target layer. Due to the 

poor permeability, strong adsorption capacity, and relatively high total porosity, the claystone 

was easily distinguished. If it contained oil and gas, it would have a high resistivity. 

Compared with claystone, sandstone has a greater permeability, low SP, low GR, and low to 

medium AC. The characteristics of argillaceous siltstone and silty mudstone lie between 

claystone and permeable sandstone. This method can qualitatively discriminate between pure 

sand and pure shale; however, however, just as shown in Fig. 4, S & S(sa) cannot be 

discriminated accurately. A photo of S & S(sa) is shown in Fig. 5. 

 



 

Fig.4 the well logging characteriscs of S&S(sa) 

3.1.2 Curve overlap method 

Generally speaking, the overlap method is one using different logging response characteristics 

and their differences to recognise the lithology of each stratum. Corresponding to the different 

lithologies, sensitivity and logging curve are different. Selecting the most two sensitive curves, 

confirming the base line, then overlapping the two curves forms the basis for the method. As 

shown in Fig. 6, use of acoustic and neutron overlapping can readily identify shale; but it still 

suffers from some qualitative identification problems depending upon the local geology. 

 

  

Fig.5 The photo of S&S(sa) 



 

Fig.6 The curves overlap method of Black shale 

3.1.3 Cross-plot method 

Cross-plotting uses different lithofacies’ well-logging response characteristics. From Fig. 7, 

we found those seven lithofacies showed up in different regions when cross-plotted. Black 

shale had a higher -value, a longer acoustic time, and a higher resistivity than other strata. 

However, there remained the problem of fuzzy interfaces. For now though, it was concluded 

that the conventional method was not suitable for application to shale gas reservoirs. 

 

  

Fig.7 Cross-plot figure 

3.2 Mathematical geological modelling 

3.2.1 The flow diagram of mathematical geology 

Petroleum exploration has been transformed by the application of artificial intelligence (AI) 

[15-17] In the middle, and later, periods of petroleum exploration and development, the total 

quantity of data has accumulated considerably and AI has become more and more important 

[18,19]. Much valuable information can be extracted from the large volumes of 

petroleum-exploration data. As one of the most significant AI methods, data analysis plays an 



essential role in petroleum exploration and development [20, 21]. The traditional methods, 

cross-plot identification or ordinary linear regression, have not resolved the present problem. 

The dilemma of “more data, less knowledge” arises. So, machine learning, data processing, 

and a training model are helpful when trouble-shooting [22] Many results may be obtained 

from data analysis methods, such as lithology identification, porosity and permeability 

distributions, flow unit types, sedimentary types, oil and gas and water reservoir identification, 

and so on. Data analysis technology has accomplished much within the petroleum industry. In 

future, data analysis will accelerate the development of petroleum exploration.. The basic 

steps for data analysis in petroleum exploration and development are shown in Fig. 8.  

Data mining task definition: marking the label attributes.  Data collection: we should 

collect more data as far as possible to avoid over-fitting and under-fitting after task definition. 

 Pre-treatment: a high data quality is necessary for data mining. It is important to carry out 

data cleaning, noise reduction, and missing value processing.  Data processing: to make 

the data more suitable for data mining, attribute selection, feature subset selection, 

discretisation, binarisation, and other processing steps are needed.  Machine learning: the 

input dataset is vast and varied. Machines need to learn more information from the data.  

Model generation: taking advantage of different data mining algorithms, different models may 

be obtained by judicious setting of parameters.  Performance measurement: different 

models produced by different data mining algorithms should be evaluated for their accuracy. 

 Knowledge: that model which has offered the best performance measurement will form 

part of the body of new knowledge. 

Fig.8 The flow diagram of mathematical geology 

3.2.2 Shale gas reservoir dataset 

The common attributes which this topic selected include lithology curves (GR NGR SP), 

porosity logs (AC, DEN, CNL), resistivity curves (RD, RS), as well as PEF, Vsh and DlgR 

which were calculated from well-logging data. 

(1) Vsh calculation method 

Vsh, which is the the clay volume, was mainly calculated from the --curve according to the 

experiential formula shown below: 



( ) ( )

( ) ( )2 1 2 1GCUR SH GCUR

sh

SH GR GMAX GMAX GMIN

V

=

=
       1  

In particular : GMAX: the log value of clean sandstone 

            GMIN: the log value for pure shale 

            GCUR: empirical coefficient, related to the tertiary strata, adopted value 

here: 3.7. 

(2) lgR calculation method 

lgR can reflect the organic matter content and its maturity. Through the log curve 

overlapping method, overlapping the porosity and resistivity curves in accordance with the 

appropriate scale, we can determine the source rock types according to the difference between 

the two curves. Under normal circumstances, the acoustic porosity curve and r deep resistivity 

curve are selected. If the formation is full of water and lacking in organic matter, the two 

curves are parallel and overlap together. However, in oil and gas reservoirs, and 

non-reservoirs rich in organic matter, the two curves differ. In application, the acoustic transit 

time, AC 50 ms/ft (168 ms/m) is equal to a logarithmic unit of resistivity RT: 

lgR=lg(RT/RTbase)+0.02*(AC-ACbase)                                              (2) 

This research selected different baselines according to the different wells and used (2) to 

calculate lgR which showed a linear correlation with total organic carbon (TOC) content. 

The organic matter content in the formation can be used to judge differences in lithofacies. 

3.2.4 Decision tree method 

 

Fig.9 Decision tree model 

 

 

 

 

 



Table 1 Decision tree model accuracy 

 
true 

S S 

true 

B M 

true 

S&S(sh) 

true 

B S 

true 

S&S(sa) 

true 

A T 

true 

F S 

class 

precision 

pred. S S 23 0 1 0 1 0 0 92.00% 

pred. B M 1 16 0 1 1 0 0 84.21% 

pred. S&S(sh) 1 0 23 1 0 1 1 85.19% 

pred. B S 0 1 0 64 0 0 0 98.46% 

pred. S&S(sa) 0 0 0 1 19 0 0 95.00% 

pred. A T 1 0 0 0 0 3 0 75.00% 

pred. F S 3 0 0 0 1 0 7 63.64% 

class recall 79.31% 94.12% 95.83% 95.52% 86.36% 75.00% 87.50%  

 

Decision tree (DT) is the most simple and widely used technique. The result from DT analysis 

looks like a tree (hence the name): it is intuitive, concise, quantitative, and more logical to 

human interpretation. DT uses a hyperplane with a single attribute to cut the input space 

repeatedly: each class can thus be divided. The DT analysis is used on a processed dataset to 

build a predictive model. From the model it was found that the lithofacies in this shale gas 

reservoir were complex. If the model had accuracy as high as that suggested in Table 1, the 

model would over-fit (see Fig. 9). Over-fitting occurs because the model describes a random 

error or noise instead of the underlying relationship. The model was also excessively complex. 

A model that has been over-fitted will generally return poor predictive performance, as it can 

exaggerate minor fluctuations in the data. Otherwise, if the model were applicable, its 

accuracy would be poor. 

3.2.5 Principal component analysis (PCA) method 

The former analysis methods failed to grasp key information since the dataset had too many 

cross-correlated parameters relative to the number of observations. PCA is a statistical 

procedure which uses an orthogonal transformation to convert a set of attributes of possibly 

correlated variables into a set of values of linearly uncorrelated variables called principal 

components. The number of principal components is less than or equal to the number of 

original variables (original attributes). That is to say that many original well-logging attributes 

were converted to several independent attributes by using the aforementioned orthogonal 

transformation. These principal component variables can represent a transformation 

relationship between many well-logging attributes (Table 2). This will reduce information 

loss. From the analysis, principal component variable values, and their proportional variance 

can obtained (Table 2). The variables which have the greatest proportion of the overall 

variance are chosen. The input data were normalized for each curve. This was done for each 

data point by subtracting the curve mean value and dividing by the curve standard deviation. 

The normalized data were then used to create the principal component curves. The resulting 



PC curves were calculated from the eigenvectors by taking an input data level in a given well. 

Using the normalisation data, and then multiplying the normalized curves by the 

corresponding eigenvalue for the curve, the results are summed. The normalized curve range 

is shown in Table 3. The dataset after pre-processing by normalisation had nearly the same 

range. The proportion of variance of each variable formed the basis for the principal 

component curves as shown in Table 2. In the above example 41.1% of the total variability in 

the data can be seen in the PC 1 curve, the PC 2 curve explained 15.7% thereof, and PC 9 

only explained 0.02%. Hence the first eight curves explained 95.7% of the variability. Hence 

we have practically reduced the information in the 17 curve input to eight curves. The 

coefficient of the PC curves against each raw curve is shown in Table 4: PCA values were 

calculated using these values. Then, DT analysis will be re-used to classify the PC variables 

dataset. After PCA, the accuracy rose to 90%, and the method promised wide applicability. 

Table 2 Principal component variables 

proportion of variance 

Table 3 Dataset Range after normalization 

Component 

Standard 

Deviation 

Proportion of 

Variance 

Cumulative 

Variance 

PC 1 2.643 0.411 0.411 

PC 2 1.633 0.157 0.568 

PC 3 1.452 0.124 0.692 

PC 4 1.187 0.083 0.774 

PC 5 1.073 0.068 0.842 

PC 6 0.918 0.05 0.892 

PC 7 0.841 0.042 0.933 

PC 8 0.637 0.024 0.957 

PC 9 0.584 0.02 0.977 

PC 10 0.42 0.01 0.988 

PC 11 0.35 0.007 0.995 

PC 12 0.276 0.004 0.999 

PC 13 0.084 0 1 

PC 14 0.052 0 1 

PC 15 0.04 0 1 

PC 16 0.02 0 1 

PC 17 0 0 1 
 

Attribute Range 

CNL [-1.529 ; 2.289] 

DEN [-8.510 ; 1.767] 

SP [-2.176 ; 1.897] 

GR [-2.095 ; 4.666] 

RD [-0.444 ; 8.314] 

RS [-0.432 ; 8.746] 

LgRD [-2.647 ; 3.220] 

LgRS [-2.467 ; 3.206] 

U [-1.557 ; 3.554] 

K [-2.227 ; 2.564] 

TH [-1.968 ; 4.486] 

PE [-2.503 ; 2.619] 

THK [-2.030 ; 4.393] 

Upa [-4.043 ; 2.317] 

Vsh [-0.402 ; 11.781] 

AC [-1.823 ; 2.931] 

LgR [-1.538 ; 2.562] 
 

 



Table 4 The Coefficient of Principal component variables 

Attribut

e PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 

CNL 0.327 0.017 -0.067 -0.321 0.12 -0.014 -0.137 0.027 0.071 0.217 0.361 0.754 -0.011 -0.023 0.018 0.001 0 

DEN -0.244 -0.024 -0.17 0.365 0.392 0.11 -0.246 -0.14 -0.327 0.576 0.084 -0.029 -0.005 -0.02 0.019 0.29 0 

SP 0.109 -0.037 0.214 -0.171 0.722 -0.278 -0.236 0.37 0.142 -0.139 -0.149 -0.184 -0.004 -0.087 0.131 -0.017 0 

GR 0.295 -0.265 0.109 0.151 -0.112 -0.209 0.08 -0.039 -0.043 0.291 -0.765 0.269 0 0.014 0.004 0.002 0 

RD 0.266 0.258 0.103 0.386 0.038 0.133 0.231 0.244 0.2 0.102 0.107 -0.015 -0.375 0.519 0.314 0.031 0 

RS 0.263 0.26 0.098 0.392 0.025 0.128 0.223 0.25 0.225 0.141 0.096 -0.024 0.378 -0.501 -0.308 -0.031 0 

LgRD 0.306 0.255 -0.099 0.036 0.203 0.192 -0.092 -0.29 -0.174 -0.276 -0.154 0 -0.557 -0.163 -0.437 0.015 0 

LgRS 0.307 0.255 -0.108 0.031 0.184 0.18 -0.104 -0.322 -0.163 -0.258 -0.131 0.001 0.623 0.359 0.139 0.011 0 

U 0.248 0.017 0.184 0.219 -0.27 -0.376 -0.238 0.29 -0.65 -0.159 0.231 -0.019 0.008 -0.008 -0.002 0.001 0 

K 0.124 -0.235 -0.259 -0.018 0.297 -0.324 0.733 -0.156 -0.229 -0.048 0.195 -0.052 0.008 -0.011 -0.001 0 0.105 

TH 0.149 -0.47 0.165 0.017 0.026 0.471 -0.046 0.105 -0.08 -0.076 0.066 -0.041 0.01 0.002 -0.005 0 0.689 

PE 0.181 -0.158 -0.538 0.052 -0.152 -0.077 -0.134 0.217 0.227 -0.217 -0.037 -0.054 0.008 -0.05 0.032 0.67 0 

THK 0.162 -0.486 0.121 0.013 0.069 0.406 0.063 0.078 -0.11 -0.08 0.092 -0.047 0.011 0 -0.005 0 -0.717 

Upa 0.071 -0.17 -0.606 0.209 0.014 -0.031 -0.237 0.157 0.083 0.034 0.002 -0.058 -0.015 0.065 -0.039 -0.675 0 

Vsh 0.148 -0.289 0.248 0.356 -0.006 -0.327 -0.239 -0.542 0.398 -0.087 0.279 -0.06 -0.02 -0.011 0 -0.001 0 

AC 0.321 -0.013 0.026 -0.377 -0.107 -0.091 -0.06 0.01 0.064 0.449 0.101 -0.456 0.056 0.328 -0.44 0.048 0 

LgR 0.345 0.112 -0.078 -0.205 -0.139 0.091 -0.037 -0.199 -0.063 0.216 0.014 -0.315 -0.115 -0.449 0.618 -0.073 0 

 

 



Fig.10 The lithofacis identification result with PCA and Decision Tree 

 

4 Field example 

PCA and DT were applied to data from the Ordos Basin lacustrine deposit shale gas well and 

the results were displayed in Fig. 10. First, the well logs should be inverted before processing 

to get precise boundary conditions and reduce the effects of instrument resolution limits. The 

first track was the clay index curves, the second track was the resistivity curves, the third 

track was porosity, the fourth track was the PCA lithofacies identified result, and the fifth 

track was the DT-identified result. From the lithofacies identification result, it may be seen 

that PCA was better than DT and other methods in this shale gas deposit. At the bottom of the 

well, the DT method showed a dead zone (indicated in white): the PCA was more precise and 

of higher accuracy than the DT method. 



5 Conclusions  

With improvements in shale gas reservoir development, engineers need more accurate 

techniques to overcome the limitations of relying on a large analytical laboratory: logging 

data therefore play an important role. Using the diversity of logging data from different 

lithofacies, the proposed method can accurately identify formation rock facies and may pave 

the way for future shale gas reservoir studies. 

Using conventional well-logging curves the method can calculate the formation parameters. 

For example, reflecting the organic matter content of the formation of lgR, and the shale 

content were possible. By comparing multiple parameters, it was found that the principal 

component analysis method for lithological facies recognition was more effective. Removing 

the logging curves that reflected the characteristics of the formation of repeatability and 

obtaining the principal component vectors reflecting the characteristics of the formation, the 

shale gas reservoir lithology was eventually determined. 
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