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Abstract: Wet chemistry methods to extract soil properties such as Fe2O3, TiO2, MnO and clay are cost effective, time 

consuming and environmental polluter. Moreover, a large set of samples has to be collected for precise spatial mapping. 

Ordinary surface soil mapping is a problematic method. Accordingly, non destructive technologies, such as remote sens-

ing methods can provide important vantages. The objective of the present work was to estimate soil attributes by labora-

tory and orbital sensors and compare these results with soil classification. The study area is a 473 ha bare soil field located 

in the region of Barra Bonita, Brazil. A sampling grid of 100 by 100 m was established and the exact position of each 

point was georeferenced, and sent to traditional (wet) laboratory analyses. The soil samples reflectance were also acquired 

by a laboratory sensor using artificial illumination (450 to 2500 nm). Over the same selected ground area reflectance data 

were extracted from the TM-Landsat-5 image. Prediction equations between the satellite and laboratory reflectance data 

and the wet chemistry were generated for each attribute. Most of the generated equations presented high and significant R
2
 

such as for the Fe2O3 with 0.82 for laboratory and 0.67 for the orbital reflectance data. The comparison between reflec-

tance estimates and laboratory wet measurements for iron presented 92.2% success for the laboratory and 91.3% for the 

orbital sensors. The comparison for the texture intervals, showed 65% and 50% success for laboratory and orbital data re-

spectively. The iron contents obtained by the sensors allowed to better remotely classify soil classes. Soil extractions to 

determine these attributes can be substitute by spectral reflectance models based on the present methodology. 

Keywords: Quantification, reflectance, soil attributes, laboratory sensor, radiometry. 

INTRODUCTION 

 Quantitative assessment of soil attributes by remote sens-
ing means represents a challenge to researchers in the areas 
of both remote sensing and soil science. Various analytical 
approaches to achieve this objective have been suggested, 
developed and examined over the years in order to establish 
a practical and acceptable approach. One of the powerful 
known method is the Near-Infrared Analysis (NIRA) ap-
proach which looks for the best model to derive chemical 
data from spectral information mostly in the near infrared 
region (1,100-2,500 nm) and under laboratory conditions. 
This method employs a statistical based analysis to deter-
mine the best spectral model in which soil chemical compo-
sition can be estimated solely from the spectral properties of 
the sample [1]. This methodology was first implemented 30 
years ago for the rapid analysis of grain moisture [2] and 
today it is well recognized and widely accepted in many 
disciplines and applications. The beginning of infrared stud-
ies dates back to the fifties, with advances being made and 
interest increasing in the sixties, motivated by the need for 
application in agriculture. Spectral evaluation methods were 
found to be more practical and faster than traditional tech-
niques used in agriculture. In recent years, the remote  
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acquisition of spectral information of terrestrial surfaces 
increased dramatically. Where significant growing of air and 
space born systems from one hand and significant accumula-
tion of knowledge about the soil reflectance spectroscopy 
from the other have stimulated this process. Also new devel-
opment and massive marketing of field spectrometer ex-
posed this technology to many new users, never before con-
sidered its utilization. 

 Today, NIRA methods are well accepted and applied in 
different areas [3]. NIRA permits the analysis of various soil 
constituents at the same time [4]. In addition to NIRA, 
Sorensen and Dalsgaard [5] and Brown [6] used visible to 
infrared light for the soil constituents determination and 
obtained good results for the quantification of organic mat-
ter, clay and iron. Lagacherie [7] and Galvão [8] show that 
even the "spectral featureless" VIS-NIR spectral region can 
be used to determine several soil constituents. The NIRA 
methodology is based on multiple linear equations which are 
constantly calibrated according to the region studied and to 
the portion of the electromagnetic spectrum available. 

 The spectral features of soil constituents in the visible 
and short-wave infrared range (450-2,500 nm) are associated 
with electronic transition (mostly in the VIS region) and 
molecular vibration (mostly in the SWIR region) of specific 
chemical groups. The obtained features are used to select the 
precise spectral ranges (or bands) for the NIRA analysis [9, 
10]. Soil minerals present distinct "spectral fingerprints" in 
this SWIR spectral regions as a result of specific or com-
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bined absorption bands such as those of OH
-
 and CO3 groups 

[11] whereas the VIS-NIR region associated more with elec-
tronic transition of Fe bearing minerals and organic matter 
compounds. In general, the spectral quantitative approach 
NIRA, is based upon the assumption that the concentration 
of a given constituent is a linear combination of various 
absorption features presented across the spectrum. This ap-
proach is empirical, and no physical or chemical assump-
tions are needed. Nevertheless in order to minimize over 
fitting of noise, each selected model has to lean on signifi-
cant spectral feature assignments. 

 A comprehensive review of the NIRA approach in soil 
science can be found in both Mulley [12], Viscarra Rossel 
[13] demonstrating a growing interest of this technology by 
many workers. 

 The spectral reflectance of a given surface is extremely 
complex, and is affected by the number and type of the pre-
sent constituents, their concentration, particle size, number, 
weight, geometry and measured methodology [14]. As the 
NIRA methods are based on the measurement of small 
changes in the absorbance reading that occur at multiple 
wavelengths it is important to minimize some of the above 
factors in order to assess quantitatively the constituent in 
question. 

 All soil attributes are important, but with different per-
centage of contribution for agriculure. Some attributes may 
be more directly related to a part of agricultural planning 
whereas others might be important to soil classification or 
general mapping. For example, phosphorus represents an 
essential element in plant development and, consequently, its 
content plays an important role in fertilizing recommenda-
tions (planning of chemical management in a given area). On 
the other hand, there are elements, such as Fe2O3 that are 
related to soil classification and that plays an important role 
to pedologists. According to Embrapa [15], information 
about the content of iron oxide, helps in the classification of 
large soil groups and families (soil surveys as a basis for 
planning) [15]. The type and relative quantity of iron oxides 
has a direct effect on the yellow and red color of soils. Yel-
low soils predominantly present a high content of goethite, 
which is responsible for the greater absorption of phosphorus 
per weight unit when compared to red soils with similar 
quantities of hematite [16, 17]. In a way, soil color is indica-
tive as to whether the soil can retain more or less phospho-
rus. However, the quantity of free iron is more important in 
soil classification since it helps to evaluate the various iron 
groups and characterize the soil forming conditions [15]. 
Since obtaining free iron content from soils is expensive, 
time consuming, and polluted, number of ground samples 
sent to the laboratories are rather limited and consequently 
render precise soil surveys. 

 It is therefore very helpful if approach such as the NIRA 
method will be implemented into the soil matrix analysis to 
determine constituents difficult to assess as the former ex-
ample. Some authors have demonstrated significant correla-
tions between spectral reflectance and total Al2O3, MgO and 
Fe2O3 content under laboratory conditions using large num-
ber of spectral bands (Table 1). Simulating orbital data, Ben-
Dor and Banin [9] were able to show that re-sampling of the 
spectral number to the six TM channels enabled the detec-
tion of soil constituents such as CaCO3, SSA, SiO2 and LOI. 

However, the question remains as to whether it is possible to 
quantify soil properties under real orbital conditions using 
sensors mounted on satellite at 800 km above the earth. If the 
answer is positive, then the next step is to check whether this 
technique can be applied to soil mapping activity. Coleman 
[25] obtained very low coefficients with this approach trying 
to map Fe2O3 but emphasize the need for further studies on 
this element in order to improve and ratify the technique, 
increasing its reliability in terms of practical applicability. 

Table 1. Review of the Correlations Found in the Literature 

Between Spectral Reflectance and Total Al2O3, MgO 

and Fe2O3 Content 

 

Authors Soil Atribute R
2
 

Chang (2001) [18] MgO 0.68 

Shepherd and Walsh (2002) [19] MgO 0.81 

Cozzolino and Moron (2003) [20] MgO 0.90 

Islan (2003) [21] MgO 0.63 

Chang (2001) [18] Fe2O3 0.64 

Cozzolino and Moron (2003) [19] Fe2O3 0.90 

Islan (2003) [21] Fe2O3 0.52 

Brown et al (2006) [6] Fe2O3 0.77 

Galvão (2001) [22] Al2O3 0.68 

Dunn (2002) [23] Al2O3 0.79 

Cohen (2005) [24] Al2O3 0.91 

 

 A recent review of spectral analysis of soils from hyper 
spectral technology is summarized by Ben-Dor [26] showing 
a promising capability to use remote sensing for many soil 
applications. The advent of hyperspectral sensors, such as 
the Airborne Visible Infra-Red Imaging Spectrometer 
(AVIRIS), has permitted the quantification of soil attributes, 
such as Al2O3 [22, 27]. Other hyperspectral sensors such as 
the DAIS-7915 also demonstrated a capability to quantify 
several important soil properties as organic matter, electrical 
conductivity and moisture [1]. Ben-Dor [28] have shown that 
the free iron oxides content in sand dunes areas can be as-
sessed on a pixel by pixel basis using CASI hyper spectral 
sensor. Using ROSIS airborne imaging sensor, Bartholomeus 
[29] have verified capability to assess soil iron oxide content 
on partially vegetated areas. Recently, Richter [30] have 
demonstrated a way to assess for soil degradation on semi 
arid environment using free iron content applying the spec-
tral model on HyMAP airborne hyperspectral scanner data. 

 Based on these considerations, the objective of the pre-
sent study was to examine the capability of the NIRA ap-
proach to analyze Fe2O3, Al2O3, Al2O3/Fe2O3, SiO2, TiO2,, 
Ki, Kr and clay content in Brazilian soils using multi spectral 
satellite sensors and to examine the feasibility of the ex-
tracted spectral model on soil classification. 

MATERIALS AND METHODS 

Characterization of the Study Area 

 The area of 473 ha selected for this study is located in the 
southeast region of São Paulo state, Brazil. The altitudes 
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ranging from 520 to 710 m above sea level. The climate of 
the region was classified according to the Köppen system as 
a Cwa type, i.e., a mesothermic climate [31]. The lithology is 
mainly represented by the occurrence of a set of basaltic 
rocks intercalated with sandstone. In addition, the other for-
mation of a group was observed, which is characterized by 
sandstone with clayey cement, shale and conglomerates, 
with a predominance of sandstone [32]. 

Soil Sampling and Analyses 

 A grid with 100 x 100 m (about 3X3 pixel size of TM 
sensor) was established where points were marked with 
numbered stakes, with a total of 473 georeferenced (Submet-
ric GPS) stakes. In each point we collected soil samples at 
two depths, 0-20 cm (expressed as layer A) and 80-100 cm 
(under surface layer B), with a bore-hole collector. For each 
sample, the soil color was determined in wet condition using 
a Minolta CR300 equipped with a Munsell color chip. Sam-
ples were submitted to chemical [33], granulometric and 
sulfuric acid digestion [34]. The following parameters were 
thus obtained: Total aluminum (expressed as oxide Al2O3), 
total free-iron (expressed as oxide Fe2O3), Al2O3/Fe2O3 ratio, 
silica (expressed as oxide (SiO2), and titanium (expressed as 
oxides TiO2), index of the weathering stage (Ki = 
SiO2/Al2O3) and index of the weathering stage for well-
drained medium texture soils (Kr = SiO2/Fe2O3+Al2O3). 

Spectral Data Collection 

 (a) Laboratory Spectral Acquisition: Data were obtained 
with the Infra-Red Intelligent Spectroradiometer (IRIS) sen-
sor [35], which covers the spectral range from 450 to 2,500 
nm. Soil samples from soil layers A and B were dried at 
45

o
C for 24 h, ground and sieved to < 2-mm. The samples 

were then placed on petri dishes and illuminated with a 650-
W halogen lamp. The electric current feeding the lamp was 
stabilized with a 1% power source. A white plate (Spectralon 
Reflectance) was used as standard [36]. The lamp was situ-
ated at 61 cm from the soil sample and the distance between 
the sample and the sensor was 27 cm, with the lamp inclined 
20

o
 at nadir [16]. The data were then analyzed with the Con-

viris softwrare for regularizing and filtering the reference 
plate data [37]. The relationship between the energy reflected 
by the soil sample and the energy reflected by the reference 
plate provided the Bidirectional Reflectance Factor (BRF). 

 (b) Satellite Spectral Data Acquisition: The Landsat-5 
TM sensor was used for this stage, using, band 1, 2, 3, 4, 5 
and 7. The digital number were converted to radiance using 
the gain and offset parameters provided by EOSAT and then 
transformed into reflectance data using the 5S model (Satel-
lite Signal Simulation within the Solar Spectrum) [38, 39]. 
The sampling points of the grid were superimposed on the 
geocorrected satellite images. Geometric correction was 
necessary to adequately position the image within the real 
field. For that purpose, planialtimetric maps (scale 1:10,000) 
obtained from the Regional Action Coordination Office (São 
Paulo State) were used. In addition, points obtained in the 
field with the Global Positioning System (GPS) with a sub-
metric error were used. In order to maintain the pixel reflec-
tance value as close as possible to its original value, a nearest 
neighbor interpolation process, method, was used, correcting 
only scale distortions, displacement or rotation between the 

image and the terrestrial projection [40]. The reflectance 
value of each pixel was then collected. 

Statistical Analysis and Comparison of the Results 

 The NIRA model was performed with 50% of the data, as 
the validation was made with the other 50%. The points used 
to generate the models were chosen randomly and were 
representative of the entire study area. It was performed two 
statistical models, as for laboratory and satellite measure-
ments. 

 Statistics with Laboratory Spectral Data: Spectral data 
acquired in the laboratory with the IRIS system permit a 
higher radiometric and spectral resolution. The selected 
bands for the development of the models were based on 
Nanni and Demattê [41] findings. The authors based their 
method on the necessity to choose selected bands to input the 
statistical model. Three concepts were used to select the 
bands from laboratory spectral curves: 1) empirical observa-
tion of the analyzed spectrum, which showed spectral reflec-
tance curve inflections, convex and concave portions; the 
variation of reflectance intensity in all spectrum; 2) literature 
observations to depict the correct wavelengths that have 
relation with soil attributes [42, 43], and 3) wavelengths 
characterized by a strong inflection, such as iron oxides (481 
nm), water and OH groups (1,417 and 1,927 nm), kaolinite 
(2,206 nm) and gibbsite (2,265 nm). 

 Based on these observations twenty two “bands” in spe-
cific wavelength (or range of wavelength) were chosen. 
When the band is specific, e.g. 480 nm, the reflectance data 
is exactly from this wavelength. If the band is a wavelength-
range, e.g. 480-580, we used the mean spectral reflectance 
that composed this range. On the other hand, some parts of 
the spectrum had an evident inflexion (absorption feature), 
confirmed by the consulted literature. In these cases we 
made a specific methodology, expressed as “Reflectance 
Inflexion Difference, (RID)” values. The RID value is the 
difference between reflectance factor at the highest and low-
est point of inflection (or amplitude of spectral data at this 
range), represented by one unique data. In this case, 13 RID 
values were selected (demonstrating height curve between 
peak and valley). Thus there were in total 35 independent 
variables. 

 Multiple linear regression equations for laboratory ra-
diometric data were established for each soil attribute, thus 
using the 35 independent variables of the GER sensor. Fifty 
percent of our surface samples were used to develop the 
model whereas the other 50% (unknown samples) were used 
to validate the procedure. 

 The following soil attributes (dependent variables) were 
correlated with spectral characteristics obtained in the labo-
ratory: aluminum oxide (Al2O3), iron oxide (Fe2O3), 
Al2O3/Fe2O3 ratio, silica oxide (SiO2), titanium oxide (TiO2), 
index of the weathering stage (Ki = SiO2/Al2O3), index of the 
weathering stage for well-drained medium texture soil (Kr = 
SiO2/Fe2O3+Al2O3), and granulometry (Sand, silt and clay). 

 Statistics with Satellite Spectral Data: Multiple linear 
regression equations for orbital radiometric data were estab-
lished for each soil attribute, thus using the six bands of TM 
sensor as independent variable for 50% of our surface sam-
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ples (layer A). The other 50% unknown samples were used 
to validate the procedure. 

 Validation stage - Relationship between spectral data 
(laboratory and satellite) with soil iron classification: Each 
soil sample analyses was classified into the following cate-
gories, (according to [15]): hypoferric (low Fe2O3 content, < 
80 g kg

-1
), mesoferric (medium Fe2O3 content, 80 to < 180 g 

kg
-1

), ferric (high Fe2O3 content, 180 to < 360 g kg
-1

), and 
perferric (very high Fe2O3 content,  360 g kg

-1
) [14]. 

 The models developed for laboratory spectral data for 
Fe2O3 were used to determine the estimated value for each 
sample. Thus we could compare when the iron classification 
was done by the interpretation of the determined method 
(laboratory traditional analyses) and by the estimated spec-

tral model. Our point here was to compare the iron classifi-
cation capability as it was characterized by a varying irons 
range. For example, we had a soil sample analyses with 300 
g kg

-1
 and is classified in ferric. The spectral data of this 

sample goes in-through the model for iron estimate, and 
generate a 330 g kg

-1
. In this case, the value allows us to 

classify the iron as ferric. As the Determined and the Esti-
mated was classified equal, the sample interpretation is cor-
rect. 

 The same method was used to validate clay contents, 
based on clay classification, as following: sandy (  150 g kg

-

1
 clay), medium 1 (151 to 250 g kg

-1 
clay) and medium 2 

(251 to 350 g kg
-1 

clay) [15]. Fig. (1) presents a flowchart of 
the methodology. 

 

Fig. (1). Flowchart of the methodology. 
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Soil Attributes Maps 

 Soil iron classification is based upon the under-surface 
soil sample. The laboratory spectral model was also used to 
estimate iron contents from under-surface. Thus, we ob-
tained spectral data information for the under-surface layer 
(80-100 cm) of each soil sample in the grid. These spectral 
data was inserted into the models and the iron value was 
used to classify iron. With this we generated an iron distribu-
tion map that was based on the laboratory sensor. 

 The same procedure was applied to the surface layer (A) 
using both laboratory and TM data that enabled the iron 
classification of each pixel grid. With this we generated an 
iron distribution map that was based on the both TM and 
laboratory sensor. 

 Using the wet chemistry data and interpolation tech-
niques we generated a ground truth soil map that was used as 
a reference to compare the iron classification results of both, 
laboratory and satellite sensors. 

RESULTS AND DISCUSSION 

Quantitative Analysis of the Soils Spectral Laboratory 

Data 

 The laboratory equations based on the 35 independent 
variables (22 bands and 13 RID) for the sulfuric acid diges-
tion samples are shown in Table 2. The Al2O3 equation con-
sisted of largest number of significant variables (nine). The 
equation with the smallest number of significant variables (4 
variables) was for the SiO2, while the equation for Fe2O3 
contained 5 variables. Thus, statistical analysis permitted the 
selection of the most representative bands and RID for each 
soil attribute. Multiple analysis techniques permitted the 
definition of bands and RID that best characterized each 
attribute, in agreement with Huete and Escadafal [44], De-
mattê and Garcia [42] and Nanni [45] findings. Al2O3, 
Al2O3/Fe2O3, Fe2O3 and TiO2 showed high determination 
coefficients (R

2
 > 0.8) (Table 2, n=206, significant level at 

1%) with these values being higher than those obtained by 
Demattê and Garcia [42] for Fe2O3 (R

2
 = 0.64, n=12, signifi-

cant level at 1%). These significant coefficients are in 
agreement with Ben-Dor and Banin [9] and Nanni and De-
mattê [41]. 

 The 0.67 determination coefficient obtained for Kr was 
also considered significant. The lowest R

2
 of 0.43 was ob-

served for Ki, where its equation was reliable (Table 2). 
Significant determination coefficients for Ki (R

2
 = 0.69) 

were obtained by Demattê and Garcia [42] when studying 
soils derived from basalt, which a relationship was estab-
lished between the weathering stage and spectral reflectance. 
Weathering indexes are determined by equations and suscep-
tible to variation, different from the other parameters. The 
estimation of clay content showed significant with high de-
termination coefficient (> 0.8) (Table 2), in agreement with 
Nanni and Demattê [41] who obtained a 0.91 R

2
. Comparing 

Coleman [46] consideration that a determination coefficient 
of 0.68 is high for clay, our results are quite expressive. The 
high coefficients of determinations obtained in studies pub-
lished later indicate the importance of employing a signifi-
cant number of bands in the models. In agreement with De-
mattê and Garcia [42] and Ben-Dor [1], care should also be 
taken to avoid effects of noise over-fitting in the models by 
means of previous statistical tests. 

 These results obtained in laboratory for clay and Fe2O3 
have been confirmed by Nanni and Demattê [47]. These 
authors tested pre-established models obtained from a differ-
ent region on the quantification of Fe2O3. It can be concluded 
that in general, the results were positive, indicating that the 
models used estimated significantly the Fe2O3 content in the 
soil. Variations in the R

2
 are due to a series of factors, such 

as soil variability, representative of the samples, number and 
specificity of the selected bands, acquisition geometry, 
equipment stability, among other factors. The spectral be-
havior of soil samples is known to vary according to the soil 
depth in question, basically as a result of organic matter [48, 

Table 2. Multiple Equation Using 22 Bands and 13 RID Acquired by Laboratory Sensor 

 

Atributte
a 

Multiple Equation 
b 

R
2 * 

Clay 
376,23728+(4092,67466*H3)+(10972*H7)+(1409,95843*H2)+(-25070*B11)+(23006*B16)+(-23085*H11) 

+(30702*B10)+(-19095*B17)+(8651,36527*H12)+(-2273,14097*H1)+(-4697,25743*B15)+(-6041,71261*B8) 
0,8570 

Al2O3  
92,36208 + (1213,86097*H3) + (-7576,03710*H11) + (2610,00589*H10) + (3890,10521*H12) + (1619,05064*H7) +  

(3342,92742*B7) + (-2264,96298*B11) + (-888,77054*H8) + (-1251,32151*B6)  
0,8728 

Al_Fec 1,29518 + (-13,66498*H2) + (21,74558*B1) + (-9,07322*H4) + (25,97556*H10) + (46,14417*H12)  0,8835 

Fe2O3
d 

110,81409 + (-9368,27072*H11) + (757,29756*H2) + (-3338,68863*H13) + (9490,32024*H12) + 
(-1005,39436*H8)  

0,8254 

Kie 
1,59767 + (-20,91352*H4) + (11,99758*H8) + (7,42979*B18) + (-25,59849*B2) + (9,96940*B10) + 

(-12,12550*H2)  
0,4259 

Krf 
0,88979 + (21,01051*H8) + (50,16260*H11) + (27,06973*H1) + (-29,90358*H5) + (-33,11525*H12) + 

(-1,40514*B19)  
0,6787 

SiO2
g 126,44349 + (1547,67871*H3) + (278,76155*H2) + (342,13833*B12) + (-837,78410*B21)  0,7205 

TiO2
h 

35,82973 + (-541,11648*H11) + (345,09118*H3) + (-505,30168*B21) + (229,06336*B12) + 
(-855,81924*H13) + (-199,65289*B3) + (400,56645*B8)  

0,8751 

aNumber of observation: Clay, 473; other attributes, 206; bB1....B22; H1...H13, bandas e alturas selecionadas; *Significance at 0,01 %; 
c Relation Al2O3 + Fe2O3; 

d Free iron (total iron obtained by sulfuric acid digestion); e Weathering index obtained by: SiO2/Al2O3. 
f Weathering index obtained by: SiO2/(Al2O3 + Fe2O3); 

g Silicium oxide; h Titanium oxide. 

B stands for Bands (selected bands). 
H stands for Hights (Spectral inflectance difference data) = explained in the methodology. 
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49]. Therefore, the question can be raised as to whether 
"models should be elaborated using separate samples from 
the surface and under-surface layer or not". 

 In the first studies [46], soil samples from the surface 
layer were used to elaborating the models. Nanni [45] estab-
lished separate spectral models for the surface and under-
surface layer and obtained significant coefficients of correla-
tion for the soil properties examined. This author then vali-
dated the models obtained for the surface layer using un-
known samples from the under-surface layer and vice-versa, 
obtaining also significant coefficients of correlation. How-
ever, in the present study, although the samples were not 
separated (surface and under-surface), for generating the 
models or validating the equations, high coefficients were 
also obtained (Table 2). These results indicate that it is not 
necessary to elaborate independent models for each soil 
depth, as this procedure is practically too complicated and 
does not provide better accuracy. However, it should be 
noted that the samples selecting for the model indeed repre-
senting the entire study area in question. 

Quantification of Soils by Spectral Orbital Data 

 In this stage we used the 6 TM bands in the VIS-NIR-
SWIR region to allocate a reliable model for the soil attrib-
utes. Except for the quantification of Al2O3/Fe2O3 ratio, the 
TM band 7 was selected in all spectral models (Table 3). The 
TM band 4 presents in 5 of 8 spectral models and always 
together with TM band 7. Nanni [45] showed the presence of 
the TM band 7 for SiO2, Fe2O3 and TiO2, whereas TM band 
4 was not selected, in contrast to the present results. Cole-
man [25] also observed the presence of the TM bands 7 and 
4 for Fe2O3. The selection of the TM band 7 might be associ-
ated with the influence of younger, more clayey soils with a 
Ki > 2, a fact that leads to higher water retention and, to-
gether with kaolinite, to a higher absorption of the TM band 
7 which was presented in all spectral models of the attributes 
studied (Table 3). However, the participation or not of a 
given band is directly related to the specific soil characteris-
tics of a region, which probably explains the differences 
between the studies results. The highest coefficient of deter-
mination (0.72) was observed for TiO2 (Table 3), in agree-
ment with the results reported by Nanni [45] and confirmed 
by Ben-Dor and Banin [9] and Nanni and Demattê [41]. 
Coefficients of determination with 0.67 and 0.65 were ob-

tained for Al2O3, Fe2O3 and SiO2, respectively. The coeffi-
cient obtained for Fe2O3 (0.67), was slightly lower than those 
obtained by Nanni and Demattê [41], (R

2
 of 0.72) but much 

higher than that reported by Coleman [25] (R
2
 of 0.288). The 

significant values for Ki, indicate its relationship with soils 
weathering and it is in agreement with Demattê and Garcia 
[42]. 

 Coleman [25], in their paper entitled "Is it possible to 
quantify soil attributes through sensors installed on spatial 
platforms?", reported significant R

2
 values ranging from 0.1 

to 0.4 for sand, silt, clay, iron and organic matter. In another 
study, Ben-Dor and Banin [9] showed that convolved TM 
spectra of soil can be used to predict CaCO3, SiO2, LOI (lost 
on ignition) and SSA (specific surface area) with R

2
 ranging 

from 0.46 to 0.71 in the validation stage. We can reaffirm 
this possibility since the determination coefficients in the 
present study were also significant (Table 3). The variation 
in the significance of the models observed among studies 
reported in the literature are again intimately related to the 
methodology and to the soil population used, especially in 
the case of orbital data evaluation. In reality, soil data ex-
tracted by a satellite positioned at a 800 km distance are 
influenced by a large number of interfering factors such as 
geometric and atmospheric variations, mixed pixel problem, 
adjacency effect, surface roughness, BRDF effect, surface 
residues, presence of vegetation, atmosphere attenuation, soil 
crust status and the sensors electro optics variation, among 
others [50]. Nevertheless, many of these factors can be 
minimized by different methods, such as atmospheric correc-
tion, high sun elevation, flat terrain and the choose pixel with 
bare soil, as reported by Demattê and Nanni [43]. 

Iron Content Estimated with Laboratory and Satellite 
Sensors and its Relationship with Soil Classification 

 The importance of the reliability degree in the estimation 
of a given soil attribute is intimately related to the objectives 
of this quantification. A soil attribute such as phosphorous 
for example, can be estimated and assessed in terms of its 
absolute value, for later concentration calculation. On the 
other hand, this same phosphorous absolute value can be 
only classified as low, medium or as high content. 

 According to the current soil classification [15], iron 
content is important for the discrimination of important soil 

Table 3. Multiple Equation Using 6 Bands of the TM Landsat Sensor 

 

Atributte
a 

Multiple Equation 
b
 R

2 * 

Clay 699,99540+(-13,44352*TM7)+(-12,69294*TM5)+(13,03814*TM2) 0,6140 

Al2O3  189,27590 + (2,91733*TM_3) + (-3,97853*TM_4) + (-6,95007*TM_7)  0,6783 

Al_Fec -0,27048 + (-0,27805*TM_1) + (0,10476*TM_5)  0,4799 

Fe2O3
d 290,71175 + (12,04310*TM_1) + (-5,54129*TM_4) + (-10,24985*TM_7)  0,6724 

Kie 1,13241 + (0,05412*TM_4) + (-0,05408*TM_5) + (0,08867*TM_7)  0,3169 

Krf 0,17683 + (-0,11305*TM_1) + (0,03486*TM_4) + (0,04700*TM_7)  0,5390 

SiO2
g 189,49259 + (-3,18311*TM_4) + (-4,94352*TM_7)  0,6531 

TiO2
h 76,88838 + (2,71784*TM_1) + (-1,54095*TM_5) + (-1,34536*TM_7)  0,7210 

aNumber of observation: Clay,236; other attributes, 103; b TM1....TM7, bands of sensor TM of Landsat satellite; *Significance at 0,01 %; cRelation Al2O3 + Fe2O3; dFree iron (total 

iron obtained by sulfuric acid digestion); eWeathering index obtained by: SiO2/Al2O3; 
f Weathering index obtained by: SiO2/(Al2O3 + Fe2O3); 

gSilicium oxide; hTitanium oxide. 
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classes. The iron content of each sample obtained by labora-
tory traditional means was then classified into the following 
ranges: hypoferric, mesoferric and ferric classes. Thus, spec-
tral model constructed using laboratory (and satellite) sensor, 
was used to determine iron content of each soil sample. This 
absolute value was compared to see in which iron classifica-
tion it would better fit, and thus compare with the same pro-

cedure using iron content obtained by the laboratory analysis 
(Table 4). The data obtained by the sensor in the laboratory 
refer to the under-surface layer (B), which is used for the real 
soil classification procedure (Fig. 2b, c). Likewise, spectral 
model constructed with the TM satellite sensor readings, was 
used to determine the iron contents of the top- surface soil 
layer (A) (Fig. 2a). 

 

Fig. (2). (a) Map of iron classification (according to Brazilian Soil Classification) determined by estimated iron contents of orbital data (sur-

face soil layer). (b) Map of iron classification estimated by IRIS sensor results (undersurface layer); (c) Detailed Soil Map. 

7520600

7.519600

7520600

7.519600

Legend
Soil Area (ha)

Total 472,7 ha
1...474 Boreholes (soil sampling grid)

756.400,0 757.400,0 758.400,0 759.400,0

LV 263,80
LVef 11,00
LVA 30,00
PA 2,00
PVA 12,96
PV 63,93
NV 16,00
NVef 13,98
CXb 7,00
CXef 2,00
RQo 49,97

756.400,0 757.400,0 758.400,0 759.400,0

7520600

7.519600

7520600

7.519600

757.400,0 758.400,0756.400,0 759.400,0

757.400,0 758.400,0756.400,0 759.400,0

7520600

7.519600

7520600

7.519600

Legend

Hipoférric 356,30
Mesoférric 115,40
Férric 1,00

Class Area (ha)

Legend

Hipoférric 355,43
Mesoférric 104,19
Férric 13,07

Class Area (ha)

++++

+

+ +

62 52 50 46

63

64

51

1
0
0

m

100 m

Number Sample

Soil sample
Collection position

a)

b)

c)



Estimation of Soil Properties by Orbital and Laboratory Reflectance Means The Open Remote Sensing Journal, 2009, Volume 2    19 

 Iron content estimated by laboratory spectral model 
matched in hypoferric class in 96.3%, and 100% in mesofer-
ric class (Table 4). The ferric class of iron was the one that 
presented high error, 71.4%. The data matrix indicate a 
higher incidence of hypoferric (82 samples) and mesoferric 
(14 samples) soil samples against the ferric one (7 samples). 
The more representation of the described classes performed a 
more robust laboratory spectral model, thus interfere in the 
results. Also, the “confusion” of these samples might have 
been due to the proximity of the iron limits between the 
mesoferric and ferric class. We found that 72% of the sam-
ples analyzed presented absolute iron values of up to 200 g 
kg

-1
, i.e., only 20 g kg

-1
 above the limit between the mesofer-

ric and ferric level which was 180 g kg
-1

. 

 Spectral model constructed using satellite sensor, pre-
sented low error on the validation procedure (Table 4). From 
the 84 soil samples classified as hypoferric (using laboratory 
traditional analyses), 80 were correctly classified using the 
spectral model, thus reaching 95.2 % correct. The mesoferric 
iron classification performed 0% error. Only 4 samples were 
confused, i.e., they should have been classified as hypoferric 
while the estimated values considered them to be mesoferric 
Again, this “confusion” might be associated with the prox-
imity of the iron content limits between one class and an-
other. The ferric class is classified as < 80 g kg

-1
 and the 

hypoferric class from 80 to 180 g kg
-1

. Another important 
factor is the pixel size of the satellite image, in this case 30 x 
30 m, where the collected reflectance value represents the 
response of interaction between elements within the pixel 
[1]. Despite the pixel considerations, we had 100 % correct 
classification to mesoferric iron class. In contrast, the 5 sam-
ples classified as ferric were classified as mesoferric (Table 
4). 

 The same confunding effect on the more saturated iron 
classes was observed for both satellite and laboratory data. 
Stoner and Baumgardner [51] reported that in mineral soils 
with iron content above 40 g kg

-1
 spectral data might be  

 
masked out by the effects of other attributes. It is thus possi-
ble that the iron content has a saturation limit in which above 
it the spectral effect is no longer related to the exact content. 

 The main problem to the use of iron content for soil clas-
sification is its cost, which is double or more than that of 
routine chemical or granulometric analysis carried out in 
standard laboratories. This generally leads to the use of 
qualitative field interpretations such as magnetic attraction in 
order to reduce these costs. However, this method, despite 
being useful, does not provide quantitative data and leads to 
discrepancies as a result of the subjectivity and degree of the 
pedologists experience. This fact restricts the number of 
samples for laboratory analysis, and thus reduces the degree 
of soil map accuracy. In this case, remote spectral sensing, 
especially in the laboratory, can be used to determine quanti-
tative iron values, which would be useful for soil classifica-
tion. 

 The results permit to infer that this technique reduces the 
costs related to the analysis of this attribute, permitting ex-
tended observations in a given area and improving the in-
formative content of the work. Although only detecting sur-
face samples, orbital data, in turn, showed high agreement 
rates with the original values. Therefore, if on one hand the 
iron content of the surface layer cannot be used for soil clas-
sification, it can be estimated with a high degree of reliabil-
ity. 

 In turn, and especially in this study (soils developed from 
basalt), a close relationship was observed between the soil 
samples classification obtained from the under-surface and 
surface in agreement with Hilwig [52]. Therefore, we may 
infer that the satellite data analysis can help in soil classifica-
tion. A general agreement of 91.3% was observed here for 
the different iron content levels obtained with orbital radio-
metric data, and of 92.2% with laboratory radiometric data. 
The present study corroborates observations made by Cole-
man [25]. 

Table 4. Validation Data. Number of Samples Classified by Iron Contents Based by Both, Laboratory (IRIS Sensor) and Satellite 

Data 

 

Classes of Iron
 a 

Number of Samples 

Classified Using 

Traditional 

 Laboratory Analyses
b 

Number of Samples  

Classified Using  

Laboratory Spectral Model
c 

 

Number of  

Samples Classified 

Using Traditional 

Laboratory  

Analyses
b 

Number of Samples 

Classified Using  

Satellite Datal Model
d 

 

(IRIS sensor) (TM-Landsat) 

Correct
 e 

Correct 
e 

  

Number of 

Samples
 % 

Confusion
f
  

Number of 

Samples
 % 

Confusion
f
 

Hipoferric (H) 82 79 96,3  3 (M) 84 80 95,2 4 (M) 

Mesoferric (M) 14 14 100,0  - 14 14 100,0 - 

Ferric (F) 7 2 28,6  5 (M) 5 0 0,0 5 (M) 

Total 103 95 92,2   103 94 91,3  

a Classes of iron used in Brazilian Soil Classification, associated with the contents of iron (sulphuric acid diggestion) where their ranges are: Hypoferric (< 80 g kg-1 of Fe2O3), 
Mesoferric (80 a 180 g kg-1 of Fe2O3) and Ferric ( 180 to < 360 g kg-1 of Fe2O3); 

b Number of samples with values determined in laboratory (sulphuric acid diggestion), in the respec-

tive iron ; c The data was quantified by using the laboratory spectral model. Then the data was evaluated to look in witch range of iron classification; d The data was quantified by 

using the satellite spectral model. Then the data was evaluated to look in witch range of iron classification; e Number of samples and percentage, esteemed by multiple regression 
equation correct classified in the same iron class as was by the values of iron determined by sulphuric acid digestion; fConfusion data. Samples that were classified wrong when 

compared with laboratory soil analysis. 
M = Mesoferric (soil iron classification). 
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Clay Texture Classes Quantified by Satellite and Labora-
tory Sensors 

 The validation procedure for the clay content mapping 
was similar to the iron above. The accuracy of the satellite 
and laboratory spectral equations was obtained by looking on 
the clay classification. The values determined by physical 
analysis and those estimated by the equations (laboratory and 
satellite) were classified into the different texture classes and 
are shown in Table 5. 

 The traditional laboratory analyses classified 50 samples 
as sandy, and 31 matched with the spectral laboratory model 
classification (Table 5), performing accuracy of 62%, 17 
samples were confused with medium texture 1. Medium 
texture 1 has a very close range with sandy class, so this 
confusion is acceptable. On the other hand, the confusion 
with medium texture 2 is a significant error. An agreement 
of 72% was observed for the medium texture 1 class, where 
193 samples out of total of 269 were matched. The confusion 
between sandy and medium 1 texture class is acceptable, 
mainly if we consider soil management as a practical factor 
for the clay content. Thus, soil with this similar texture 
would have similar management. 

 Relatively high agreement (76%) was observed for the 
clayey texture, with 1 sample being confused as sandy and 5 
samples as medium 2 (Table 5). The lowest agreement (39 

%) was observed for the very clayey class, with 31 samples 
being confused as clayey. It is interesting to note that clayey 
and very clayey textures are also found very close. 

 
 The results obtained for under-surface soil sample based 
on the laboratory spectral measurements were better than 
those obtained from the orbital data, with a general agree-
ment of 65% (not taking into account estimated samples with 
acceptable errors) (Table 5). The orbital data obtained for 
layer A reached 50% agreement, (not taking into account 
samples with acceptable errors) (Table 5). 

 Satellite spectral model presented 50 % agreement with 
laboratory traditional analyses (Table 5) for sandy texture 
classification. We had 220 samples classified as sandy tex-
ture, i.e., from witch 110 samples matched and 90 samples 
was confused with medium texture 1 (Table 5). Confusion 
between sandy and medium 1 sample is acceptable since 
they belong to the same management group. However, if we 
look on the soil classification level this is incorrect. The 
largest confusion was observed for values estimated to be of 
sandy texture, i.e., 70 samples, with this confusion being 
acceptable as reported earlier in view of the proximity of the 
texture for these soils. Confusion was also observed for the 
medium 2 class with 15 samples and for the clayey class 
with 5 samples, an unacceptable result. Agreement was 48% 
for the medium 2 class, with 27 samples with determinate 
value, with 4 samples being confounded with the medium 1 

Table 5. Number of Samples Classified for Granulometry Texture. Comparison of Soil Class Texture Obtained Traditional Soil 

Analyses and by Spectral Laboratory and Satellite Models. Satellite Used Surface Layer for Evaluation; Laboratory Sen-

sor Used Under-Surface Layer for Classification 

 

Texture Class
a 

Number of Samples Correct 
Number of Samples that were Confused 

with Other Classes of Texture
b 

Samples Classified Using Satellite Spectral Model 
c 

 
Determined by Traditional 

Soil Analyses
d 

Determined by Tradito-

nal Soil Analyses
e
 
 %  

Sandy 220 110 50 90 medium 1, 17 medium 2 and 3 clayey 

Medium 1 152 62 41 70 sandy, 15 medium 2 e 5 clayey 

Medium 2 27 13 48 4 medium 1 e 10 clayey 

Clayey 57 51 89 6 medium 2 

Very Clayey 17 0 0 16 clayey and 1 medium 2 

Total 473 235 50  

Samples Classified Using Laboratory Spectral Model
f 

 VDd N.A.e %  

Sandy 50 31 62 17 medium 1 e 2 medium 2 

Medium 1 269 193 72 51 sandy, 24 medium 2 e 1 clayey 

Medium 2 49 21 43 3 sandy, 17 medium 1 e 8 clayey 

Clayey 54 41 76 1 sandy, 5 medium 2 e 8 very clayey 

Very Clayey 51 20 39 31 clayey 

Total 473 306 65  

a Soil class textures: Sandy (  150 g kg-1 of clay), medium 1 (151 to 250 g kg-1 of clay), medium 2 (251 to 350 g kg-1 of clay), clayey (351 to 600 g kg-1 of clay), very clayey (> 600 g 

kg-1 of clay); b Confusion samples, clssified wrong when compared with values determined in routine analysis; c Esteemed values of multiple equation with orbital data, TM-Landsat 

5; d Number of samples determined (VD) in laboratory (routine analysis), in its respective class texture; eNumber of samples and percentages esteemed by multiple equation, cor-
rectly classified in the same soil class texture as was by the routine soil analysis; f Esteemed data by multiple equation obtained by laboratory sensor IRIS. 
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class and 10 samples with the clayey class. In both cases, 
some of these data might have been close to the differentia-
tion limit of the texture classes and the result is therefore 
acceptable. The best results using the satellite data was on  
the clayey texture classification with 89 % correct (Table 5). 
The clayey class showed high agreement (89% of the esti-
mated data), with 51 estimated samples being correctly clas-
sified out of the total; 57 samples with determinate value, 
with confusion being observed for 6 samples of class me-
dium 2, which is an acceptable result (Table 5). The very 
clayey class was completely confounded, with 16 estimated 
samples being classified as clayey and one sample as me-
dium 2. It is difficult to differentiate these texture classes in 
the field, especially when the samples showed clay content 
close to the class limit of 600 g kg

-1
 (Table 5). 

Spectral Analysis of Satellite and Laboratory Iron Con-

tent and Soil Classification and its Relationship with Soil 
Survey Map 

 The total iron spectral map classification determined by 
spectral laboratory model (Fig. 2b) and the satellite spectral 
map of iron (Fig. 2a), were compared with the soil map 
determined by the traditional method (Fig. 2c). Traditional 
method is performed in laboratory by sulphuric acid diges-
tion. Soil samples have their iron structures completely de-
stroyed, so the total iron can be determined. This type of 
analysis is time consuming, modify soil components and 
environment polluter. Iron and texture are classified by the 
diagnostic B horizon (under-surface). Iron compounds do not 
vary along depths whereas for some soil classes, clay content 
do vary. Satellite sensor can only pick the surface layer and 
laboratory has the opportunity to go under it. Thus, satellite 
sensor matched more the iron classification, but missed the 
clay profile variation and hence hamper the texture classifi-
cation of the soil. 

 Satellite spectral model determined a predominance of 
the hypoferric class with 356.30 ha, 75 % of the 473 ha area 
(Fig. 2a). The LV (laboratory value) soil has similar iron 
contents from surface until the under-surface soil depth. It 
performed a 263.80 ha (Fig. 2c). These soils were character-
ized by a medium texture, close to a sandy texture. The 
LVA, PA, PVA, RQo and some PV parameters were in-
cluded in the hypoferric level (Fig. 2a, c). The mesoferric 
level comprised 115.40 ha, corresponding to about 24.4% of 
the total study area, matching with medium to clayey and 
very clayey textural, including LVef, NV, NVef, Cxb and 
CXef. However, LV with a clayey and very clayey texture 
was also observed in a small portion. One example is sample 
313 with a clayey texture in layer A (540 g kg

-1
) and a very 

clayey texture in layer B (700 g kg
-1

), which was assigned to 
the mesoferric level. Only sample 364, with 1 ha, occurred in 
the ferric level for clayey LV, with this level not being ob-
served in the under-surface layer. 

 The iron distribution using laboratory spectral model 
presents a similar distribution with satellite model (Fig. 2a, 
b), with a predominance of the hypoferric class with 355.43 
ha, corresponding to about 75% of the total study area, with 
the same soils as described for layer A. 

 This finding justify the low variability of iron between 
surfaces. A more significant difference was observed for 
values in the area of the mesoferric level (104 ha and 115 ha 

area obtained for laboratory and satellite spectral models, 
respectively). On the other hand, the area of the ferric level 
was increased in the map, from 1 ha to 13 ha. In fact, the 
more clayey soils determined by traditional soil map (Fig. 
2c), presented a higher iron content. Thus, in these cases, the 
satellite spectral model did not completely match with real 
truth. 

 However, the data estimated by laboratory spectral model 
and classified for the iron levels, especially, the LVef, NVef 
and CXef units were found to be reduced in the mapped area, 
with a concomitant increase in the areas of the LV, NV and 
CXb classes, without the ferric class (Fig. 2b, c). A good 
example is the mapping unit of LVef with 11 ha (within the 
rectangle in Fig. 2c), where various samples showed a ferric 
character (Fig. 2b). However, for the same area (Fig. 2b), 
only sample 195 was found in the ferric level in the map, 
thus reducing the area of LVef to be only 1 ha. In this re-
spect, the iron values estimated from laboratory spectral 
model, together with delimitation techniques for the mapping 
units, might contribute to the refinement of the limits of 
some soil classes. 

CONCLUSIONS 

 It is possible to estimate the absolute content of Fe2O3, 
Al2O3, SiO2, TiO2, clay and the Al2O3/Fe2O3 ratio based on 
spectral information acquired in both laboratory and satellite 
domains by multiple linear regression models using the elec-
tromagnetic radiation in the VIS-NIR-SWIR region. 

 The results indicate that there is no need to elaborate 
independent models for each soil sampling depth, which 
would be more difficult to put into practice. However, it was 
found to be important to analyze samples representative of 
the whole study area. 

 Quantitative evaluation of spectral reflectance permits 
the acquisition of Fe2O3 and clay data as a basis for soil 
mapping and classification. 

 The findings of the present study indicate that orbital 
sensors can quantify soil attributes related to soil classifica-
tion, such as clay and Fe2O3 mostly on the soil surface. 
Laboratory sensors for sure enlarged better results, due to the 
control of external factors. Although, the implement of the 
methodology will depend on the objectives of the work. 
Satellite can improve information from distant areas, but has 
the problem to read only surface soil layer. Laboratory con-
ditions have the vantage to control external factors and take 
readings of various soils layers (surface and under-surface). 

 Soils attributes have influence in specific wavelengths, 
although also interfere in all spectrum. This explains why the 
use of multiple regression acquire important results. On the 
other hand, this methodology can only be improved if pat-
terns of different soils in different regions be developed. An 
automatic procedure on the determination of models and 
quantification of unknown soil samples has to be improved. 

 This type of methodology can have several vantages in 
relation to traditional analysis, such as environmental qual-
ity, less cost for humanity, quick information, enlarge soil 
survey and land use planning. 
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