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Abstract: The objective of this work was to develop and test a remote sensing technique to determine bare soils with 

pixel information from satellite images. The methodology was tested and improved on a 2,805 km
2
 area located in the 

state of São Paulo, Brazil. The pixel data from a Landsat-5/TM image was transformed into reflectances. 294 pixels were 

evaluated by five factors simultaneously and included the following: color composition image; vegetation index; soil 

brightness information (soil line concept), and a comparison between spectral curve of the pixel with spectral patterns of 

soils. A validation procedure was based on the discriminate analysis for the real soil related with each pixel. For this, a 

soil map was overlaid onto the image, and the pixels were related to its respective soil class. Soil brightness variations 

were readily observed in the spectral curves and in red-NIR features and corresponded to differences in texture and parti-

cle size as well in iron and organic matter content. Although qualitative, the observation of color composition was useful 

for pixel identification. The soil line concept was very useful as it presented a high R
2
 coefficient (0.90). Comparison be-

tween ground level soil spectral curves with satellite information could assist on the evaluation of the real format of the 

curves. Discriminate analysis indicated a 99.3% correct classification of the soils. Field work validation indicated 90% 

significance. The present method could help researchers acquire valuable information (i.e., soil attributes quantification), 

when soil data must be acquired from satellite images. 
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INTRODUCTION 

 Traditional laboratory soil analyses are expensive, time-
consuming, and require unfriendly chemical products with 
environment alteration. Therefore, the use of alternative 
“environmentally clean” techniques, such as remote sensing, 
has become increasingly popular in the agronomy commu-
nity for soil evaluation and textural classification [1], soil 
discrimination [2] and intensive agriculture practices (e.g., 
precision agriculture). 

 The remotely acquired data and their relationships with 
soil mineralogy, texture organization, and pedogenetic proc-
ess have been well demonstrated by numerous studies. Nev-
ertheless, the majority of these studies are based on the use 
of ground spectral data obtained either under lab conditions 
or directly in the field [3-5]. Recently, others have tried to 
apply laboratory spectral analysis methodologies for use in 
soil surveying [6]. 

 Unlike ground or airborne spectroradiometric data, cur-
rent satellite data present a much lower spectral resolution.  
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In addition, there are undesirable factors affecting resolution 
such as landscape and vegetation cover, as well as the inti-
mate mixing of soils and other components within a single 
pixel. Therefore, before satellite images can be utilized for 
soil evaluations, we need to know if the pixel data is really 
from the soil. 

 The importance of utilizing remote sensing to improve 
the use of soil is described by [7]. Then, how can we recog-
nize a soil if the spectral data is mixed with plant informa-
tion? Most studies have used vegetation indexes to identify 
bare soil [8]. However, these indexes were developed to 
indicate vegetation and not bare soils. Other field compo-
nents can interfere with these determinations such as rough-
ness, moisture and landscape position. Therefore, the ques-
tion remains: “when we study an image obtained from a 
distance of 800 km from the target (i.e., by satellite), can we 
extract data that truly pertain to the soil?” If not, all our data 
regarding this subject must be questioned. 

 In a pioneer study, [9] tried to quantify soil attributes by 
satellite images, but obtained only a low correlation between 
soil attributes and spectral reflectance. They hypothesized 
that “The low coefficients observed could be attributed to 
atmospheric particles that are known to affect the electro-
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magnetic energy that is sensed from satellite and aircraft 
platforms.” Furthermore, other factors such as surface condi-
tions with in atmospheric corrections can also interfere in the 
data collection from image pixels. 

 One of the first methods to determine bare soil was to 
look at the real color composition. Although, this method 
was not quantitative, when used separately it could induce 
errors. Afterwards, the vegetation index was developed and 
later followed by the soil line concept [10]. Although, these 
techniques were used separately for soil identification. An 
accurate and complete system for the evaluation of satellite 
images would greatly assist researchers. 

 Therefore, the main objective of this work was to de-
velop and test a methodology to detect bare soil in satellite 
images. The main hypothesis was that an accurate remote 

sensing capacity for the evaluation of various aspects related 
to soils and satellite image could be correlated with real 
information. This methodology could be helpful for the sci-
entific community in various ways by allowing the remote 
detection of soil attributes, such as mineralogy, texture, 
chemistry, color, quantification and discrimination, to be 
used to assist soil surveying. 

MATERIALS AND METHODS 

 For this study, a high productive agriculture region was 
chosen in the western region of the state of São Paulo, Brazil 
(Fig. 1). There were two phases in this study: (1) Develop-
ment of a method to collect the best pixel data that represent 
soil information acquired from satellite images; and (2) vali-
dation of the method by looking to see if the soils could 

 

Fig. (1). Flow chart of the method to detect bare soil in satellite image. 
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really be discriminated in unknown locations of the study 
region. 

Phase One – The Method, Acquisition of Soil Informa-

tion at the Satellite Level 

 A Landsat 5 – TM satellite image with the software 
ENVI was used. The TM digital numbers were first normal-
ized to the “top of atmosphere” apparent reflectance that was 
then converted to corrected reflectance with the 6S radiative 
transfer code simulation [11, 12] to eliminate the effects of 
Raleigh scattering and ozone absorption: 

L
s ( )= n 1+m 1 DN  app=

L s

E 0,

L s d 2

E 0, cos( z )
 

*
=

app

t o3
a,r

T r

, where: 

 Ls ( ) (W/m
2
/μm) is the radiance at the sensor; DN( ) is the 

digital number for one TM band; n, m are the TM offset and 
gain calibration coefficients, respectively; app is the “top of 
atmosphere” apparent reflectance; E0 , is the solar exo-
atmospheric irradiance related to each TM spectral interval; 

z is the solar zenith angle; d is the Earth to sun distance 
(astronomical units); 

*
 is the Raleigh/Ozone corrected re-

flectance; To3 is the ozone transmittance (absorption); a,r is 
the Raleigh atmospheric reflectance, and Tr is the total at-
mospheric Raleigh transmittance. The TM calibration coeffi-
cients utilized in this paper were those provided by Dr. Kurt 
Thome (Remote Sensing Group – Optical Science/University 
of Arizona, USA). 

 Reflectance data for the pixels were then collected from 
images of the studied region. The main point of the method-
ology is the care that must be used to make the correct 
evaluation of the pixel. The choice of the pixels used for the 
verification samplings was based on a series of steps to de-
tect bare soil (see also Fig. 1): 

1. First, the pixel was visually evaluated for color com-
position information. Two color compositions of the 
Landsat bands, 3, 2, 1 and 5, 4, 3, red, green, and 
blue, respectively, were evaluated. The evaluation of 
the pixel in the first color composition was to look for 
the real color of the soil. If the pixel information indi-
cated bare soil, it was considered to be so. The second 
color composition when indicating bare soil presented 
various tones of purple. Both criteria had to be met 
for the information to indicate bare soil. 

2. The same pixel was evaluated by a vegetation index 
“Soil Adjust Vegetation Index” (SAVI) [8]. When the 
value of the index SAVI for the pixel was zero, it was 
considered as an indicator of bare soil, without vege-
tation. Therefore, 

SAVI =
IVP V

IVP +V + 0.5( )
1.5  

 where: IPV is the reflectance in the infrared band 
(band 4 of Landsat 5 TM) and V is the reflectance in 
the red band (band 3). The 0.5 and 1.5 values are the 
gain and off-set coefficients. 

3. For the third step, a dispersion graph (scatter plot) of 
reflectance values between bands 4 (Near Infra Red) 
and 3 (Red) representing the “soil line” was made 
[10, 13]. This graph presented several points that ex-
isted in the image, and that reflected the relationship 
between these two bands. Basically, the brightness 
was detected. The “soil line” (or 1:1 line) is a line 
starting between the “x” and “y” axis at a 45-degree 
angle. As values get closer to the 1:1 line, the prob-
ability that the pixel represents bare soil also becomes 
higher. All points located near this line were marked 
and the software indicated the respective pixels in the 
image. Pixels with a higher probability of represent-
ing bare soil could then be visualized in the satellite 
image. 

4. A spectral curve for each pixel was directly deter-
mined by the software ENVI [14]. This allows the 
user to retrieve the general spectral patterns of soils. 
By comparison, the spectral curve could be used to 
indicate some soil type or be used for another objec-
tive. At this point, the user has two options: (a) evalu-
ate spectral curves of soils in the literature or (b) ob-
tain spectral curves of the soils in the region through 
laboratory analysis. In the case of the present work, 
we used option “b”, and the method used was devel-
oped as follows. 

Laboratory Spectral Data of Soils 

 In this phase, 39 locations that represent positions of the 
different soil classes that occur in the study area were evalu-
ated. The objective of this phase was to give to the user an 
indication of the soil spectral patterns that occur in the re-
gion. For the end user, this phase is necessary only if there 
are no soil spectral data patterns for the region. Usually, this 
information is accessible from other research studies or from 
databank patterns. Soil samples were collected from each 
point of the 39 locations of the different soil classes. Each 
point was georeferenced using the differential global posi-
tioning system (DGPS) with a maximum error of 3 meters. 
At each point, the soil was sampled at 0-20 and 80-100 cm 
depths, which corresponded to the surface (Epipedon) and 
sub-surface horizons, if present [2], respectively, with a total 
of 542 samples. Theses samples were used for soil classes’ 
designation and bi-directional reflectance measurements in 
as for Epipedon only. 

 The collected soil samples were sent for physical, chemi-
cal, and mineralogical analysis in the laboratory. Soil sam-
ples were taken to laboratory where they were dried at 45°C 
for 48 h and sieved to 2 mm. The texture groups of the soils 
were defined according to [15]. The contents of total sand, 
silt, and clay were determined by the densimeter method 
[16]. The texture ratio was defined by dividing the mean values 
of the clay contents found in the A and A/B horizons (when 
present) by the contents of clay from the B horizon, with the 
exception of the BC horizon [15]. Soil chemical analyses 
included pH (using CaCl2 solution 0.01 N), organic matter, 
OM (Colorimeter method), phosphorus, calcium, magnesium 
and potassium (extracted by the ion-exchange resin method), 
and aluminum (using extractor KCl, 1 N) and aluminum plus 
hydrogen (using SMP buffer solution with calcium acetate, 1 
N, pH 7.0) were determined [17]. Total iron was determined 
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by the sulfuric acid digestion method [16]. Munsell colors 
were used to characterize the dry and moist soil samples by 
colorimeter method. Mineralogical analyses of the sand, silt, 
and clay fractions were performed [18]. 

 Soil samples were oven-dried, crushed, and sieved (2 
mm). Bi-directional reflectance measurements (450-2500 
nm) of the fine earth material were carried out using a labo-
ratory spectroradiometer, Infra-red Intelligent Spectroradi-
ometer, with the sensor positioned vertically at a distance of 
27 cm over the soil sample. The samples were placed on a 9-
cm diameter Petri dish. The light source, a 650-W halogen 
lamp, was positioned 61 cm from the sample container at a 
15

o
-zenith angle. The energy for the lamp was controlled by 

regulated voltage equipment. A white calibrated plate 
(BaSO4) was used as the primary standard. Spectral curves 
were correlated with the classification obtained in the field, 
thus giving the spectral soil pattern. This information was 
converted into satellite sensor data to facilitate its interpreta-
tion. A simulation was established to compare satellite and 
terrestrial data. The mean SR factor obtained by the IRIS 
sensor was calculated in the wavelength ranges correspond-
ing to sensor bands (convolution), e.g., 450–520, 520–600, 
630–690, 760–900, 1,550–1,750, and 2,080–2,350 nm. A 
Tukey test between each band was performed to evaluate 
which bands could differentiate the soils. Soils discriminate 
analyses [2], were also developed with the DISCRIM proce-
dure [19]. The objective of these results was to verify if their 
reflectance would influence their discrimination. This infor-
mation could be useful to understand the satellite data. 

 Therefore, an image pixel was considered to be bare soil 
only if all four items discussed indicated so. The complete 
method is illustrated in Fig. (1). 

Phase Two: Validation Procedure 

 There were used two procedures do validate the method-
ology. The first method had as objective to collect spectral 
pixel information (using the methods of phase 1). The pixel 
information would then be inserted into discriminate analy-
ses for the soil spectral data. It was considered that if this 
information was from bare soil, then the soils could be dis-
criminated. Thus, an atmosphere-corrected scene was over-
laid with vector file (semi-detailed soil map) where we had 
sampled 26 soils types in all regions. Afterwards, was fol-
lowed phase one steps, and evaluated 294 soil spectral sam-
ples (pixels) that had their spectral data extracted. The posi-
tion of the pixel was evaluated in relationship to the limits of 
the soil type in a semi-detailed survey looking for the pixels 
located inside the mapping units studied. 

 The major soil types encountered in the study region and 
utilized in this investigation are indicated in Table 1. In each 
of these types, there were subgroups that (according to Bra-
zilian Classification System) were also evaluated, for exam-
ple, LV1, LV2, LV3, which are discussed in the text, differ-
ence in their parental material, granulometric and/or chemi-
cal characteristics. The 294 soil data pixels were then 
grouped into the soil types based on the soil map. Therefore, 
several pixels belonged to each of the respective soil classi-
fications. These data were then subjected to non-parametric 
discriminate analysis [19]. The validation procedure ex-
pected that if soils were well discriminated, then their pixel 
data were from bare soils (Fig. 2). 

 To ensure a stronger validation for the method field work 
was developed. 100 field locations (100 hundred from the 
294 hundred) where pixels were collected, were visited with 
a GPS at the field to check surface situation. It was consid-

Table 1. Soil Classification and Designation 

 

Soil Classification 

American
[a]

 Brazilian
[b]

 
Abbreviation 

Observation 

Landscape 
Drainage 

Depth  

(cm) 
Color

[c] 
 

Typic Eutrorthoxs, Pachic Umbriorthoxs 
Latossolo Vermelho 

distroférrico 
LR Flat to gently rolling Well > 200 1.3 YR 3.3/2.3 

Rhodic Paleudalfs Nitossolo Vermelho TR Gently rolling to rolling Moderate > 200 2.5 YR 3.1/2.8 

Typic Haplorthoxs Latossolo Vermelho LE Flat to gently rolling 
Well to 
strong 

> 200 2.5YR 3/3 

Typic Haplorthoxs, Typic Umbriorthoxs, 
Pachic Umbriorthoxs 

Latossolo Vermelho 
Amarelo 

LV Flat to gently rolling 
Well to 
strong 

> 200 4.9 YR 3.5/2.9 

Typic Paleudults, Typic Paleudalfs Argissolo Vermelho PE Rolling Moderate > 200 2.5 YR 3.3/2.9 

Paleudults, Arenic Abruptic Paleudalfs, 
Typic Paleudalfs, Abruptic Paleudalfs and 

Abruptic Arenic Paleudults (PV) 

Argissolo Vermelho 
Amarelo 

PV Rolling Moderate > 200 3.9 YR 3.3/2.5 

Typic Udorthents and Lithic Hapludolls Neossolo Litólico Li Strong rolling 
Ob-

structed 
< 30 2.5 YR 3.3/2.8 

Typic Quartzipsamments 
Neossolos Quart-

zarênico 
AQ Flat to gently rolling 

Very 
Strong 

>200 7.7 YR 3.7/2.6 

Albiaquic Paleudalfs, Vertic Paleudalfs and 
Epiaquic Tropuldults 

Planossolo PL Flat to gently rolling Worth >200  

Aquoxs, Aquults, Aquepts and Aqualf Gleissolo G Flat 
Very 

Worth 
>200 8.9YR 4.5/2.9 

[a] Soil Survey Staff (1998). 
[b] Brazilian Soil Classification (Embrapa, 1999). 
[c] Minolta Colorimeter based on the Munsell Color Charts, Baltimore, Maryland, U.S.A., 1954. 



28    The Open Remote Sensing Journal, 2009, Volume 2 Demattê et al. 

ered three types of situation, vegetated, partially vegetated, 
non vegetated (bare soil). A statistics of error was per-
formed. We considered only non-vegetated as correct sam-
ples. 

RESULTS AND DISCUSSION 

Pattern of Soils Obtained by Laboratory Spectroradi-

ometric Data 

 Before exploring remote sensing techniques, it is impor-
tant to understand the spectral behavior of soils at the ground 
level. Spectral signature curves for the different soil types 
are shown in Fig. (3a). Conspicuous differences in the re-
flectance intensities or brightness, particularly in the spectral 
interval between 850 to 2350 nm, could be observed. Be-
sides the typical absorption features, there were vibration 
modes (e.g., Al-OH bending mode near 2,100 nm and OH

- 

overtones near 1,400 and 1,900 nm) and electronic transi-
tions (e.g., Fe3

+
 crystal field electronic features near 410 

nm). These variations in brightness clearly corresponded to a 
decrease in the clay content as well as in the total iron con-
tent as the soil sequence (LR, TR, PE, LE, PV, AQ) becomes 
more sandy, with quartz dominating (mineralogical analysis) 

and becoming brighter (Table 2). Quartz improves the reflec-
tance intensity of soils [20]. Also, weathered soils such as 
LR presented absorption band at 2,265 nm, which indicates 
the presence of gibbsite that can be confirmed by X-ray 
analysis, and shows an absorption feature that can discrimi-
nate this soil from others [21]. 

 The LR and TR soils, which have the highest clay and 
iron contents, show the lowest brightness and nearly flat 
spectral signature curves (Table 2). The absorption features, 
specially the vibration tones, are masked by opaque and 
trans-opaque minerals, mainly magnetite and ilmenite as 
suggested by the X-ray diffraction analysis [22]. Statistically 
speaking, these two soils show similar spectral behavior, 
which prevents practical discrimination when considering 
the TM spectral intervals (Table 3). Similar spectral behav-
ior, concerning the TM intervals and statistical significance, 
was also observed between the PE and LE soils, even though 
the LE soil tends to show a more abrupt reflectance increase 
beyond 1,000 nm. Spectral similarity was also found be-
tween the TR and PE soils [5]. This is somewhat expected 
since these two soils are derived from basaltic parent mate-
rial and have high opaque minerals contents in the sand frac-
tion, which results in low brightness and causes the absorp-

 

Fig. (2). Sequence of the validation procedure. 
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tion features to be rather indistinguishable [22]. Neverthe-
less, it is important to note that slight differences in the re-
flectance values are at around the TM-5 interval. Higher 
values found in the PE soil are attributed to alterations in the 
iron content and texture as well. These two soils are very 
similar in the field, and sometimes only the iron contents can 
discriminate them (Fe2O3 > 120 g kg

-1
 for TR). 

 

 

 

Fig. (3). Ground (laboratory) spectral curves of soil (a); Simulated 

spectral data; (b) Real TM spectral data for soils (c). 

 The occurrence of crystalline iron, mainly as ferric ox-
ides, is primarily confirmed by the well-defined absorption 
features observed in the 400-500 nm intervals [23]. In the 
studied soil sequence, as the iron content increases from AQ 
to LR (Table 2), these concavity features, which are caused 
by Fe

3+
  O

2-
 charge transfers, become sharper and progres-

sively shifts towards the visible portion of the spectrum. 
These displacement is related to crystal field transitions, 
which is intensified by higher levels of Fe

3+
 ion content and 

anti-ferromagnetic couplings of oxides and hydroxides [24]. 

Table 2. Chemical and Textural Soil Data from the Studied 

Region 

 

Organic Matter Sand Silt Clay Fe2O3
 [a] 

Soil  

Expression -------------------------- g kg
-1 

----------------------------- 

LR 15 263 120 616 213 

TR 21 270 180 550 180 

LE 14 542 100 357 94 

LV 16 618 105 278 38 

PE 31 250 160 590 49 

PV 13 701 121 176 50 

Li 28 526 173 286 77 

AQ 12 850 70 80 18 

PL 22 290 210 500 50 

G 39 390 245 365 125 

[a]Total iron extracted by sulfuric acid digestion. 

 

 Variations in the iron content as well as in its ionic and 
crystalline state are also indicated by the absorption features 
in the 800-900 nm regions. As the soil type becomes sandier, 
there is less iron to affect the reflectance and these features 
progressively fade. Concomitantly, the vibration absorption 
features near 1,400, 1,900, and 2,200 nm become deeper and 
sharper as the masking factors, mainly iron ox-
ides/hydroxides and organic matter, decrease. This is clearly 
seen in the spectrum of the highly bright, quartz dominated 
AQ soil [6]. 

Soil Patterns Obtained by Satellite Multispectral Data 

 The average spectral signature curves simulating Land-
sat-5 TM (Fig. 3b) data are different from the ground spec-
troradiometer data since no specific absorption features can 
be observed (Fig. 3a). Nevertheless, spectral characterization 
and discrimination between soils are still possible since these 
curves show differences in shape and reflectance intensity 
[25]. On the other hand, the spectral patterns from labora-
tory-simulated data were very similar to the real satellite 
sensor information (Fig. 3c). The next step should then be to 
understand and evaluate real satellite information. 

 As we observed, LR and TR had similar spectral curves. 
These are clayey to very clayey soils with a high content of 
hematite, which is responsible for the low reflectance [26]. 
As the iron content decreases and the sandy texture becomes 
more pronounced (refer to Table 2), an increase in brightness 
is readily observed (PE and LE soils). A further decrease in 
the iron content concomitant to an increase in the content of 
sand yields even higher reflectance, especially near the TM 5 
spectral interval (LV soil). 

 Although LR, LE, and LV soils present nearly identical 
morphological properties (the presence of a B horizon), they 
do show distinct spectral behaviors. This distinct spectral 
behavior is mainly attributed to a decrease in the iron content 
in the sequence LR, LE, LV, which is accompanied by a 
reflectance increase. In this sequence, soil color ranges from 
2.5YR (LR) to 5YR (LV), which is also related to hematite 
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and goethite contents, respectively [27]. This variation in 
hue, which is a direct response to changes in the iron and 
organic matter contents, is clearly depicted by the TM visible 
bands [28]. With respect to the soils dominated by a sandy 
texture in the top layers (LV, PV, Li, and AQ), these soils 
tend to show a higher overall reflectance, which peaks out in 
the TM-5 region. 

 Soil spectra at the series level seem to follow the same 
trends observed at the lower taxonomic category. As seen in 
Fig. (4), which depicts the spectral signatures of distinct soil 
types belonging to the LE and LV subgroups, soil brightness 
variations confirm changes in texture and iron content as 
previously described. For example, LV5 and LV7 are quite 
different in the reflectance intensity when compared with 
LV1 and LV3. This occurs because the first group has higher 
contents of clay and iron. Also, note that, as sand content 
increases for the soil unit, reflectance becomes higher in 
band 5. 

 With regards to soil discrimination at the subgroup level, 
no single TM band was capable of simultaneously discrimi-
nate all soil types (Table 4). Nevertheless, partial discrimina-
tion with statistical significance was achieved using individ-
ual bands. For example, TM-1 throughly separates soils LR, 
LE, and PV while no clear distinction was made between the 
LV and LE. It is also worth mentioning that the complete 
discrimination between LR, LE, and LV throughout the 
spectral range was evaluated. Therefore, these results can 
help determine the key bands for the discrimination of tropi-
cal soils [29-31]. 

 In spite of the similarities, a major difference between the 
original and simulated TM curves for the relative reflectance 
intensity between TM-5 and TM-7 spectral intervals was 
observed. In the case of the simulated data, from TM-5 to 
TM-7, the reflectance intensity either shows a slight increase 
or stays constant, while the original TM data show a nega-
tive slope from TM-5 to TM-7. A plausible explanation for 
this opposite behavior may be associated with the surface 
reflectance retrieval for TM-7. Water vapor, for which no  
correction was attempted, may slightly lower the atmos-
pheric transmittance in the 2,080 to 2,350 nm region. In 
 

 

 

 

Fig. (4). Spectral curves extracted from the TM image of soil series 

(map units) within the LR (a) and LV (b) subgroups, respectively. 

addition, the calibration coefficients utilized to convert the 
digital numbers to “top of atmosphere” apparent reflectance 
may not have correctly accounting for sensor degradation 
and the very low irradiance in the TM-7 range. One must 
also leave open the possibility of moisture content in both, 
soil and litter. In this case, TM-7, rather than TM-5, would  
 

 

Table 3. Statistical Analysis
[a] 

for Spectral Bands from the Laboratory Sensor 

 

Band
[b]

, nm 

1 2 3 4 5 7 Soil 

450-520 
 

520-600 
 

630-690 
 

760-900 
 

1550-1750 
 

2080-2350 

 

LR 0.033 A* 0.056 A 0.1193 A 0.1369 A 0.1446 A 0.1446 A 

TR 0.035 A 0.056 A 0.1148 A 0.1362 A 0.1476 A 0.1424 A 

PE 0.0372 A 0.0598 A 0.1178 A 0.1413 A 0.161 A 0.1715 AB 

LE 0.043 B 0.644 B 0.1275 B 0.1617 B 0.2168 B 0.23 B 

PV 0.0524 C 0.0834 C 0.155 CD 0.2009 C 0.2629 C 0.2789 CD 

AQ 0.0624 C 0.098 C 0.1659 D 0.2396 C 0.3714 D 0.3755 E 

[a] Tukey test was applied to the reflectance values for each band. Mean values were compared to the spectral data from all soils in each band. Different letters denote a statistically 

significant difference (P < 0.01) between the spectral data of soils in each respective band. 
[b] Bands reflect the Landsat-5 TM range. Spectral data simulated from ground base data set. 
* Same letter in the column indicates no statistical difference at 5% significance (Tukey test). 
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preferentially depict the absorption features related to the 
OH

-
 groups. 

 The soil line concept was very useful for the evaluation 
of the pixel. We first evaluated the ground sensor data. A 
better insight into the nature and relationships between the 
distinct soil types was provided by the soil lines plotted in 
the red-near infrared range (Fig. 5a and Table 5). These are 
best-fitted lines through each red/NIR pair for the large 
number of soils, which readily yielded information regarding 
the slope and brightness of each soil spectrum. The statistics 
are shown in Table 5. The R

2
 values were high because they 

are bare soils, but they do not have the same tendencies (dif-
ferent slope and intercept) (Table 5) [13, 32]. 

 For soil lines relative to the ground spectroradiometric 
data and for those based on the TM imagery (Fig. 6), it was 
found that ferric oxide dominated soils (LR) are preferen-
tially positioned near the origin of the red-NIR range, while 
the bright, sand dominated soils (AQ) tend to be further 
away from the origin. It is also important to emphasize that 
distinct soil lines were required in order to synthesize the 
spectral information of each soil type herein considered, 
being important for the soil discrimination [10, 13, 33]. Dif-
ferences in line parameters (i.e., slope and intercept) may be 
regarded as a direct response to the wide variability in the 
organic matter and iron oxide contents among the major soil 
types [13]. 

 It is also important to point out that the slopes of the TM 
data soil lines seem to be systematically lower when com-
pared to the slopes of the “ground data” soil lines. On one 
hand, the closer proximity of the TM data soil lines to the 
1:1 line may strongly suggest that the extracted samples 
were predominately from bare soil surfaces. However, the 
points from soils do not match exactly on a 1:1 graphic posi-
tion and have variability along the soil line, as shown in Fig. 
(5) [32]. 

 

 

Fig. (5). General soil line obtained from: Ground sensor (a); Orbital 

sensor (b). 

Table 4. Statistical Analysis
[a]

 for Spectral Bands of the TM/Landsat-5 (Data Obtained from Orbital Sensor) 

 

Band
[b]

, nm 

1 2 3 4 5 7 Soil 

450-520 
 

520-600 
 

630-690 
 

960-900 
 

1550-1750 
 

2080-2350 
 

LR 0.043 D* 0.07 D 0.112 D 0.100 D 0.098 D 0.078 D 

LE 0.055 C 0.094 C 0.151 C 0.148 C 0.167 C 0.124 C 

LV 0.068 B 0.115 B 0.176 B 0.179 AB 0.239 A 0.189 A 

PV 0.084 A 0.135 A 0.193 A 0.196 AB 0.245 A 0.195 A 

Li 0.076 B 0.123 B 0.181 AB 0.178 B 0.199 B 0.158 B 

TR 0.047 C 0.077 C 0.112 C 0.112 C 0.106 C 0.086 B 

PE 0.064 CB 0.104 CB 0.159 BC 0.157 BC 0.185 B 0.142 B 

AQ 0.09 A 0.116 AB 0.173 BC 0.253 A 0.309 A 0.247 A 

PL 0.078 AB 0.12 AB 0.159 BC 0.158 BC 0.181 B 0.126 B 

G 0.07 AB 0.15 A 0.229 A 0.176 B 0.175 B 0.134 B 

[a] Tukey test was applied to the reflectance values for each band. Mean values were compared to the spectral data from all soils in each band. Different letters denote a statistically 
significant difference (P < 0.01) between the spectral data of soils in each respective band. 
[b] Bands represent Landsat-5 TM ranges. Spectral data simulated from ground data set. 
* Same letter in the column indicates no statistical difference at 5% significance (Tukey test). 
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 Nevertheless, the high R
2
 values found for all the soil 

lines reveal that the set of samples within the same subgroup 
(e.g., LR) depict a broad range in reflectance magnitudes and 
show good concordance regarding their spectral shapes. 
Regarding the TM data, minor deviations from the estimated 
soil lines, as observed in Fig. (6b), may be an indication that 
litter and surface roughness contributions to the pixel re-
sponse should not be neglected [13]. 

Validation of the Method 

 Concerning the validation analysis, a 100% discrimina-
tion was achieved when considering the ground spectroradi-
ometric data (Table 6). These results were indicative  
 

suggesting that similar results could be expected with the 
satellite data [13]. Similar results [29], although they had 
errors of 55.6%, which were most likely because they used a 
field spectral radiometer. 

 The validation procedure was based on the evaluation of 
soil discriminate analyses with satellite data. The results 
indicated that 99.4 % of the samples were correctly classi-
fied, considering the 10 major soil types (subgroup level) 
(Table 7). The samples that were misidentified occurred 
between similar soils. For example, LE was confused only 
once with TR, and one sample of LR with LE [23]. These 
soils are all similar, and these errors are acceptable. In gen-
eral LR and TR can only be discriminated by soil profile  
 

Table 5. Soil Line Statistical Parameters for Ground and Satellite Sensors 

 

Satellite Data - Individual Soil Units Satellite Data – Overall Group of Soils Ground Data - Great Groups of Soils 

Unit Obs. Equation R
2
 Unit Obs. Equation R

2
 Obs. Equation R

2
 

LR1 9 y = 1.236x – 0.039 0.99 LR 38 y = 1.163x – 0.03 0.89 3 y = 4.09x – 0.352 0.91 

LR2 12 y = 1.119x –0.024 0.84        

LR3 17 y = 0.863x + 0.006 0.63        

LE1 3 y = 0.824x + 0.036 0.94 LE 57 y = 1.022x –0.006 0.94 14 y = 1.40x – 0.020 0.98 

LE2 18 y = 1.110x – 0.01 0.95        

LE3 4 y = 0.977x +0.0009 0.99        

LE2+LE3 32 y = 0.945x + 0.005 0.91        

LV1 5 y = 0.906x + 0.028 0.87 LV 28 y = 1.034x - 0.002 0.91 - - - 

LV3 3 y = 0.969x + 0.011 0.99        

LV5 12 y = 0.990x + 0.002 0.74        

LV7 8 y = 1.040x + 0.036 0.96        

PV1 4 y = 1.157x - 0.036 0.71 PV 61 y = 1.054x - 0.008 0.96 5 y = 1.453x – 0.018 0.99 

PV4 14 y = 1.15x - 0.027 0.99        

PV6 3 y = 1.164x - 0.098 0.99        

PV7 27 y = 0.975x + 0.008 0.95        

PV9 10 y = 1.138x - 0.022 0.96        

PV11 3 y = 0.601x + 0.078 0.95        

Li2 3 y = 0.965x +0.0011 0.85 Li 30 y = 1.055x - 0.012 0.92 - - - 

Li3 24 y = 0.971x +0.0001 0.95        

Li6 3 y = 0.960x +0.0002 0.83        

G1 6 y = 1.589x - 0.077 0.55 G 11 y = 1.060x - 0.0042 0.95 - - - 

G3 5 y = 1.082x - 0.011 0.99        

- - - - PE 20 y = 0.881x + 0.017 0.92 5 y = 0.969x - 0.027 0.96 

   -        

- - - - PL 5 y = 0.25x + 0.1225 0.5 - - - 

           

- - - - TR 20 y = 1.123x - 0.023 0.96 6 y = 1.324x – 0.015 0.81 

           

- - - - AQ 19 y = 0.941x + 0.021 0.97 6 y = 1.521x – 0.012 0.99 

    All soils 289 y = 1.097x - 0.017 0.97 39 y = 1.735x – 0.061 0.96 
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morphology evaluation. There were confusions in spectral 
data classification of soils in transition areas when work with 
laboratory data [23]. 

 

 

Fig. (6). General soil line obtained from ground (a) and satellite (b) 

sensors for all studied soils. 

 The discrimination of 26 map units (series level) showed 
a high performance with 99.3% correct classification (Table 
8). The few errors observed occurred between similar soils 
such as LR3 with LR2, which have very similar morphologi-
cal characteristics. 

 Field work indicated that the predominant samples vis-
ited was non-vegetated soils. From the 100 places visited, 90 
had bare soils (places where soil was in preparation for man-
agement), and 10 was partially vegetated (with low high of 
the culture, although with soils in appearance), and none of 
them had full vegetation. The important here is that the date 
of the image was from final of September, when we have 
less influence of humidity and large agriculture areas, where 
farmers are working on the bare soil. Thus, the date and 
region of interest are important for the success of the bare 
soil detection. 

CONCLUSIONS 

 The coarse resolution of satellite data, although lacking 
diagnostic absorption features observed in the laboratory soil 
spectra, readily responded to variations in texture and granu-
lometry, as well as to the iron and organic matter contents. 
Such responses, generally associated with brightness 
changes, were clearly depicted in both the spectral curves 
and the red-NIR ranges. 

 Real and accurate information from bare soils can be 
detected by satellite spectral image information by using a 
simultaneous methodology. The real color compositions 
allowed factual visual information to be obtained from bare 
soil. The soil line concept is an important factor for this 
analysis. Pixels along the soil line demonstrated bare soil and 
were influenced by soil attributes. The vegetation index also 
indicated non-bare soil conditions. The use of only one of 
these parameters does not guarantee bare soil information. 
The study of the behavior of spectral patterns, before using 
satellite information, could assist in the collection decision 
for bare soil pixels. 

 The methodology was validated with 90% significance 
on field work and 99.3% of statistical analysis of the col-
lected pixels correctly associated with its respective soil 
classification. Thus, this method can greatly improve studies 
where satellite pixel information from bare soil is required. 

 

Table 6. Non-Parametric Discriminate Analysis for the 6 Units of Soils (Number of Observations and Error for the Classification) 

for the Ground Spectral Data 

 

Correct Error 
Soil Total of Samples 

Samples % Samples % Soil Misidentified 

AQ 6 6 100 0 0 - 

LE 14 14 100 0 0 - 

LR 3 3 100 0 0 - 

PE 5 5 100 0 0 - 

PV 5 5 100 0 0 - 

TR 6 6 100 0 0 - 

Total Error  0.0    

"-" Does not exist. 
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Table 7. Non-Parametric Discriminant Analysis for the 10 Main Groups of Soils, Number of Observations, Classifications and 

Error for Data Obtained from Satellite Sensor 

 

Soil Total of Samples Correct Samples % Samples Error % Soil Confused 

AQ 19 19 100 0 0 - 

G 11 11 100 0 0 - 

LE 57 56 98 1 1.75 TR 

LR 38 37 97.37 1 2.63 LE 

LV 28 28 100 0 0 - 

Li 30 30 100 0 0 - 

PE 18 18 100 0 0 - 

PL 5 5 100 0 0 - 

PV 61 60 98.36 1 1.64 G 

TR 20 20 100 0 0 - 

Total Error  0.6    

"-" not exist. 

 

Table 8. Non-Parametric Discriminate Analysis for the 26 Units of Soils (Number of Observations and Error on the Classification) 

for Data Obtained from Satellite Sensor 

 

Soil Total of Samples Correct Samples % Samples Error % Soil Confused 

AQ 19 19 100 0 0 - 

G1 6 6 100 0 0 - 

G3 5 5 100 0 0 - 

LE1 3 3 100 0 0 - 

LE2 18 18 100 0 0 - 

LE2+LE3 32 32 100 0 0 - 

LE3 4 4 100 0 0 - 

LR1 9 9 100 0 0 - 

LR2 12 12 100 0 0 - 

LR3 16 15 88.24 1 5.88 LR2 

LV1 5 5 100 0 0 - 

LV3 3 3 100 0 0 - 

LV5 12 12 100 0 0 - 

LV7 8 8 100 0 0 - 

Li2 3 3 100 0 0 - 

Li3 24 24 100 0 0 - 

Li6 3 3 100 0 0 - 

PE 18 18 100 0 0 - 

Pl 5 5 100 0 0 - 

PV1 4 4 100 0 0 - 

PV11 3 3 100 0 0 - 

PV4 14 14 100 0 0 - 

PV6 3 3 100 0 0 - 

PV7 27 26 96.3 1 3.7 LE1 

PV9 10 10 100 0 0 - 

TR 19 18 95 1 5 LE2 

Total Error 0.7     

"-" not exist. 
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