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Abstract: Spectral unmixing algorithms have proliferated in a variety of ecological disciplines by exploiting remotely-

sensed data. However, in East African rice field agro-ecosystems, aquatic habitats of Anopheles arabiensis, a major vector 

of malaria in Sub-Saharan Africa (SSA), utilize semi-permanent to temporary habitats (e.g., floodwater areas, vernal 

pools, hoof prints) which pose a special problem in landscape studies, basically one of spatial scale. For example, low 

spatial resolution pixel sizes from satellite sensors are often too large for identification of productive riceland An. 

arabiensis habitats. In this research we spectrally decomposed a sub-meter spatial resolution (i.e., QuickBird) riceland An. 

arabiensis habitat pixel for predicting productive habitats in a riceland environment. Initially, we constructed a regression 

model which revealed that paddy preparation An. arabiensis habitats were the most productive based on spatiotemporal 

field-sampled count data. Individual pixel spectral reflectance estimates from a QuickBird visible and near-infra-red 

(NIR) at 0.61m spatial resolution data of a paddy preparation An. arabiensis habitat were then extracted by using a Li-

Strahler geometric-optical model. The model used three scene components: sunlit canopy (C), sunlit background (G) and 

shadow (T) generated from the riceland image. The G, C, T components’ classes were estimated using ENVI, an object-

based classification algorithm. In ENVI
®

, the Digital Number (DN) of the pixel in every QuickBird band was viewed 

using the z-profile from a spectral library. After making an atmospheric correction from the image for the study site, the 

DN was converted into ground reflectance. A convex geometrical model was also used for endmember validation of the 

spectrally decomposed paddy preparation habitat. An ordinary kriged-based interpolation was performed in ArcGIS
® 

Geostatistical Analyst using the reference signature generated from the unmixing models. Linear unbiased predictors and 

variance estimates were derived of all productive An. arabiensis habitats in the study site based on the extracted pixel 

endmember reflectance estimates. Spectral unmixing tools may be used to decompose QuickBird visible and NIR pixel 

reflectance of a productive An. arabiensis habitat. Thereafter, an ordinary interpolator can use the sub-pixel data along 

with other spatially continuous explanatory variables sampled from productive habitats for targeting other high density 

foci habitat sites which can help implement larval control strategies in a riceland environment. 

Keywords: QuickBird, Anopheles arabiensis, endmember spectra, Li-Strahler geometric –optical. 

1. INTRODUCTION 

Homogenous habitat pixels of An. arabiensis, a major 

vector of malaria in Sub-Saharan Africa (SSA) can be 

extracted from satellite data using object based classification 

(e.g., ENVI
®

 technology) and then analyzed using traditional 

classification algorithms (e.g., nearest-neighbor, minimum 

distance, maximum likelihood), or knowledge-based 

approaches and fuzzy classification [1]. Generally, the 

algorithms behind image classification methods utilize 

spectral, spatial, texture, shape, context and ancillary 

information to model spatial objects and land use land cover 

(LULC) attributes based on individual pixel information [2]. 

In the preprocessing of optical bands it is then possible to  
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calculate both the reflectance as it is measured by the sensor 

and the reflectance coming from the pixel at sensor level [3]. 

Additionally, local variability in remotely sensed data can be 

characterized by computing statistics from An. arabiensis 

habitat pixel spectral endmember data, e.g., coefficient of 

variance or autocovariance, or by analysis of fractal 

relationships [1]. 

Recently, there have even been some attempts to improve 

the spectral analysis of remotely sensed environmental data 

by using texture transforms in which some measure of 

variability in pixel values [i.e., digital number (DN)] is 

estimated within local windows; e.g. contrast between 

neighboring pixels [4]; the standard deviation [5], or local 

variance [6]. The coefficient of variance gives a measure of 

the total relative variation of pixel values by providing a 

normalized measure of dispersion of a probability 

distribution using the ratio of the standard deviation to the 
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mean [2]. Previous programs have been presented to 

compute spatial co-occurrence matrices from digital data in 

image format for performing spectral texture analysis for 

pixel based analyses but were restricted to physical 

characteristics of terrain-related parameters, primarily 

derived from digital elevation models. Covariates of An. 

arabiensis habitats, however, include multiple field and 

remote-sampled predictor variables [1]. Furthermore, most 

classical mathematical algorithms for spectral image 

classification do not usually quantify the dependence 

existing between a pixel and its neighbors, i.e., spatial 

autocorrelation. Autocorrelation is a characteristic of data 

derived from a process that is articulated in one or more 

spatial dimensions which can describe the error structure of 

ecological sampled data. Since the present methodologies for 

image classification can allow the multispectral satellite 

signal with an LULC to vary from pixel to pixel about a 

mean spectrum, variance covariance matrices can quantify 

the variability around the mean. For example, an 

autocorrelation consistent covariance matrix using 

generalized methods of moments (GMM) may be used in 

reparameterization and parsimonious modeling of sub-pixel 

endmemeber spectra [2]. Furthermore, by adding radiometric 

band and sensor complementary information related to the 

textural features of an image, the autocorrelation spatial 

structure of the DN can also be further quantified [5]. In this 

way, the results obtained from pixel-by-pixel classifiers can 

simultaneously take into account both radiometric and 

texture information in An. arabiensis habitat surface 

reflectance components. This improvement would arise from 

the hypothesis that a pixel is not independent of its neighbors 

and, furthermore, that its dependence can be spatially 

quantified and incorporated into the classifier.  

Introducing geostatistical texture into an An. arabiensis 

habitat classification process using a set of measures of 

spatial autocorrelation indices based on univariate and 

multivariate estimators of a variogram function may also 

enable forecasting prolific habitat sites. For example, the 

autocorrelation structure of a decomposed An. arabiensis 

habitat endmember spectra can be modeled by fitting a 

theoretical
 
variogram model to the empirical variogram using 

the following parameters: (i)
 

model family, such as 

exponential, spherical, or Gaussian; (ii)
 

nugget variance, 

(i.e., the variance among adjacent samples);
 
(iii) range, or the 

distance beyond which observations are spatially
 

independent; and (iv) sill, the constant variance among 

spatially
 
uncorrelated samples. Predictors of An. arabiensis 

habitats can then be generated by incorporating a model of 

the covariance using the random function on a weighted 

moving average interpolation. Thus, extracting individual 

constituent spectra and a set of corresponding fraction 

abundances present in a pixel from a productive An. 

arabiensis habitat based on spatiotemporal field-sampled 

count data can generate a spectral ‘footprint’ which may be 

used for discriminating other productive habitats throughout 

the rice cycle. Treatments or habitat perturbations should be 

based on surveillance of larvae in the most productive areas 

of an ecosystem [1]. 

Traditionally, pixel-dependent classification processes 

assign labels to individual pixels [2] which can then be used 

to predict single pixels extracted from satellite data or the 

proportional membership of each pixel to a specific class [7]. 

The per-pixel classification includes the hard classification 

[e.g., Maximum likelihood classification(MLC) [8, 9], 

ISODATA classification [10, 11], and the soft classification 

(e.g. linear spectral unmixing [12-14] and neural network 

[15, 16]. Of these pixel classification techniques the soft 

classification provides the most realistic representation of 

land cover. However, the per-pixel hard classification cannot 

by itself utilize individual pixel reflectance estimates for an 

An. arabiensis habitat classification due to the spectral error 

caused by the effect of the excess heterogeneous surface 

topographic-induced illumination variants in riceland 

agroecosystems, which can result in extensive pixel 

misclassification. Land cover change throughout the rice 

cycle (i.e., flooding, usage of traditional and power tillers, 

low-lift irrigation pumps, pesticides on selected land and soil 

qualities) can lead to a mixed spectral An. arabiensis habitat 

pixels [17]. 

Commonly, mixed pixels occurs as a result of each 

sensor element’s instantaneous field-of-view (iFOV) 

imaging more than one land cover class [18], which often 

results in poor classification accuracy especially when 

conventional algorithms such as the MLC are used [19]. The 

iFOV is the angle subtended by the geometrical projection of 

single detector element to the Earth's surface [7]. A mixed 

pixel is a combination of spectra from multiple unique 

substances (i.e., endmembers) [3]. Endmembers for riceland 

An. arabiensis habitats commonly represent disparate 

macroscopic objects (e.g., mud, rice plant leaves) [1]. Mixed 

pixels will complicate direct quantitative interpretation of an 

An. arabiensis habitat as the upwelling radiance from 

multiple materials will be integrated into a single observed 

spectrum. The combination of finite pixels and 

heterogeneous riceland landscapes will result in excessive 

spectral mixing within an An. arabiensis habitat pixel. 

In order to resolve the mixed pixel problem different 

models have been developed to unmix the pixels into 

different proportions of their endmembers using various 

combinations of spectral unmixing algorithms and 

geometric-optical models. Pixel unmixing is the 

decomposition of mixed pixels into a collection of distinct 

endmembers and a set of fractional abundances that indicate 

the proportion of each endmember in the mixed pixel [20]. 

The approaches vary in their methods, and through their 

algorithmic formulations implicitly incorporating 

assumptions regarding the physical mechanisms and 

mathematical structure by which the reflectance properties 

from disparate substances combine to yield mixed pixel 

spectra. Since determination of endmembers would be the 

fundamental stage in each process of an An. arabiensis 

habitat classification, selection of an unmixing algorithm is 

vital. 

A linear mixing model may be used to separate 

endmembers of a mixed pixel from a productive An. 

arabiensis habitat based on field-sampled count data, which, 
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in turn, may be used to forecast other high density foci 

habitats in riceland agro-ecosystems. Linear mixed models 

have been applied in many fields including air quality, 

chromatography, and spectroscopy and more recently in 

hydrochemical studies of natural catchments. A linear 

unmixing algorithm can predict retrieved fractional 

abundances and their associated errors due to both natural 

variability and corrupting noise sources [21]. The linear 

mixing model assumes that the mixed pixel is a linear 

combination of ground cover radiance spectra. One of the 

most common approaches in linear mixed modeling is an 

iterative generalized least squares estimation (LSE) 

procedure [22, 23]. The LSE can generate individual 

unbiased values with a minimum variance
 
of prediction error 

provided that selection is within levels
 
of fixed effects and 

the variances of the random effects before
 
selection are 

known [23]. Recently, the combination of linear spectral 

unmixing and three-dimensional discrete wavelet transforms 

(DWT) for pixel feature extraction has been developed and 

refined [24, 25]. In particular, one of the refinements has 

been in the fast implementation of the three-dimensional 

wavelet transform, denoted as the hyperspectral DWT using 

the lifting implementation of the Haar wavelet basis in all 

three dimensions [26, 27]. The other refinement has been in 

replacement of least squares matrix pseudo inversion in the 

linear spectral unmixing technique with more numerically 

stable singular value decompositions (SVD) [28]. The SVD 

allows for a figure of merit calculation on the effectiveness 

of the endmember spectral signature library used in 

unmixing. Object variations that result in pixel variations 

within spectral signatures for surface material require various 

unmixing algorithms using multitemporal remote sampled 

data [2]. 

However, mixed pixels can also exist in an An. 

arabiensis model because disparate materials spectra join to 

form a single pixel; this phenomenon is especially prevalent 

in remote sensing systems with low spatial resolution. To 

date, spectral unmixing algorithms have proliferated in a 

variety of disciplines that exploit low resolution and 

hyperspectral data. For example, the LSE method was used 

by Hlavaka and Spanner [23] using AVHRR data, by Maselli 

on Landsat TM data [29], and by Luo et al., [30] on a 4-

channel sensor. The SVD method was used by Herries, et al. 

[31] multispectral airborne data and by Herries et al. [32] on 

simulated Landsat and SPOT TM data. Sirkeci et al. [33] 

used restricted total least squares methods on simulated 

hyperspectral imagery. Another unmixing method, quadratic 

programming, was used by Qian [34] with AVIRIS data and 

by Li and Bruce [22] with handheld spectroradiometer data. 

Petrou and Foshi [35] used a fuzzy method with simulated 

SPOT HRV data, and Nascimento and Dias [36] used 

independent component analysis with simulated AVIRIS 

data. Li and Bruce used Bhattacharyya distance and the 

discrete Haar wavelet transform for dimensionality reduction 

preprocessing [22]. Keshava [37] used the spectral angle 

mapper (SAM) metric and generalized likelihood ratio test 

on HYDICE data. Zhu and Eastman [38] used minimal 

residual and probability guided algorithms. Ma et al. [39] 

used a genetic algorithm on HYMAP data. Riedmann and 

Milton [40] used a supervised maximum likelihood selection 

algorithm on HYMAP and CASI data. Chein-I et al. [41] 

used divergence and band decorrelation algorithms on 

HYDICE data. Haertel and Shimabukuro [42] estimated 

multiple land cover components such as vegetation, bare soil 

and shaded areas from Landsat TM data and then 

successfully derived unknown components’ endmembers in 

the low spatial resolution TerraMODIS image by using a 

linear spectral mixing model. Zurita-Milla et al. [43] 

inverted the linear spectral mixing model to obtain MERIS 

endmembers based on the known fractional coverages of 

each pixel also from a Landsat TM classification as well. 

However, an An. arabiensis habitat pixel extracted from low 

resolution data may still contain mixtures of unidentified 

habitat components after spectral decomposition; therefore, 

the selected single pixel extracted may not present the field-

sampled data accurately. For example, multitemporal 

Landsat TM has been used to estimate paddy rice fields [44, 

45], but its spatial resolution (30m) makes it difficult to 

correctly identify An. arabiensis habitats [46]. Even 

Multispectral thermal Imager (MTI) data at 5m cannot 

provide an optimum scale to segment and classifiy an 

individual anopheline habitat pixel [47]. 

A spatially quantitative pixel assessment for targeting 

highly productive An. arabiensis habitats from gridded 

QuickBird visible and near infra-red (NIR) data 

(www.digitalglobe.com) at 0.61m spatial resolution may 

help direct resources for implementing larval control 

strategies in riceland environments. Variograms constructed 

using QuickBird data have been used to describe the degree 

of spatial dependence and stochastic processes in 

spatiotemporal-sampled vector mosquito habitat explanatory 

predictor variables [1]. Empirical semiovariograms have 

been efficiently computed for sub-meter resolution data on a 

regular grid from the spectral density function using the fast 

Fourier Transformation (FTT) and smoothed periodogram 

[5]. For remote identification of georeferenced vector 

mosquito habitats the first step is often to construct a discrete 

tessellation of the region [17]. Unfortunately, the FTT and 

the empirical semiovariogram cannot be applied on most 

geoecological spatiotemporal-sampled datasets of riceland 

An. arabiensis habitats as often these data are remotely 

captured by unequally spaced sampling matrices. In this 

research we used an Ordinary interpolator and a digitized 

grid-based algorithm overlaid on QuickBird visible and NIR 

data for predicting productive An. arabiensis habitats based 

on spectrally extracted pixel endmember estimates. 

Orthogonal grid-based algorithms overlaid on satellite data 

of riceland areas will fail to capture physical or man-made 

structures (e.g. paddies, canals, berms) at these habitats but, 

digitizing georeferenced An. arabiensis habitats in ArcGIS
®

 

can convert a polygon into a grid cell which may conform to 

riceland habitat boundaries. Our assumption was that an 

Ordinary kriged-based model could use data generated from 

the sub-meter digitized gridded QuickBird data for 

estimating optimal spectral endmember predictors of 

productive An. arabiensis habitats based on spatiotemporal 

field-sampled count data and their underlying autocorrelation 

structures. 
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Ordinary kriging is a geostatistical approach to modeling 

which relies on the spatial correlation structure of the data to 

determine the weighting values which includes rigorous 

modeling of correlation between data points for determining 

the estimated value at an unsampled point. In this research 

the Ordinary kriged-based model was constructed by 

incorporating the covariance of the random function on a 

weighted moving average interpolation for spectrally 

predicting productive An. arabiensis habitats by combining 

the prior distribution of the endmembers with a Gaussian 

likelihood function. The resulting posterior distribution was 

Gaussian with a mean and covariance that was computed 

from the observed habitat pixel values, their variance and the 

kernel matrix derived from the original distribution.  

In this research, we kriged a spectral endmember 

reference signature extracted from a productive An. 

arabiensis habitat based on field-sampled count data 

sampled in Karima rice-agro village complex in the Mwea 

Rice Scheme, Kenya, using the Li-Strahler geometric-optical 

model. Topographic effects on bidirectional and 

hemispherical reflectance can be calculated with a 

geometric-optical model [20] Multiple models of vegetation 

canopy reflectance have been quantified using Li-Strahler 

geometric-optical models. For example, a simple 

bidirectional reflectance model suitable for homogeneous 

plant canopies was developed by Gao [19] to simulate 

directional changes of spectral reflectance from tall grass 

canopies which was then compared with field-sampled 

measurements. A modified two-stream approach was used in 

the model by considering the transfers of upward reflected 

and diffuse radiation in different viewing directions, 

downward direct and diffuse radiation, and their 

dependences upon canopy leaf orientation. An analytical 

solution was derived to allow a fast computation of 

directional reflectance based on canopy parameters or a 

retrieval of canopy parameters based on reflectance 

measurements. Modeled spectral reflectance was generally in 

a good agreement with measurements, and effects of 

inhomogeneous canopy characteristics such as hot “spot” 

and of soil reflection. Both modeled and observed 

reflectance estimates revealed strong backscattering and 

relatively weak forward scattering in the red band, but a 

more symmetric distribution in the NIR band. The 

directional changes of reflectance in both red and NIR bands 

were dominated by primary scattering; the magnitudes of 

reflectance in the NIR band were largely influenced by 

secondary scattering. Furthermore, model simulations for 

three theoretical leaf angle distributions, planophile, 

spherical, and erectophile, revealed that hemispherical 

reflectance (i.e., surface albedo) could be overestimated by 

nadir reflectance at a small solar zenith angle and 

underestimated at a large solar zenith angle. They also found 

that the error can be reduced to a minimum at an optimal 

solar zenith angle which had the same magnitude for the 

three leaf angle distributions but this uncertainty probability 

estimate decreased with increasing canopy leaf area index. 

The final model vegetation spectral index varied by 10–24 % 

with viewing angle for a given leaf angle distribution and 

canopy leaf area index. 

Biophysical parameters quantified from ground 

reflectance data of an An. arabiensis habitat using the Li-

Strahler model may determine an optimal endmember 

habitat dataset. Furthermore, by analyzing a simple model of 

bidirectional reflectance estimates for An. arabiensis riceland 

habitat canopy cover with azimuthally nonuniform leaf 

distributions may establish sampled rice leaf inclination 

values using a “Lambertian-viewing” cone around the nadir 

for a range of solar zenith angles. If a surface exhibits 

Lambertian reflectance, light falling on it is scattered such 

that the apparent brightness of the surface to an observer is 

the same regardless of the observer's angle of view (i.e., the 

surface luminance is isotropic) [5]. In this region, rice leaf 

inclination and rice leaf azimuth may not materially affect 

the bidirectional reflectance from an An. arabiensis habitat 

which may be then effectively constant thus, generating false 

statistical inferences in unmixing models. According to 

Schowengerdt [20] under constant bidirectional reflectance 

viewing / illumination geometry, only the product r cos  

may be inferred for a complete habitat canopy and r cos
2
  

L for a sparse canopy. The r cos  and Lcos  are very 

basic canopy-related parameters, influencing canopy 

bidirectional reflectances. This would also apply to more 

complicated An. arabiensis habitat products that involve an 

additional term which may be a function of the solar zenith 

angle, rice leaf azimuth, and rice leaf zenith angle, where r is 

rice leaf reflectance,  is zenith angle of rice leaf normal and 

L is rice leaf area per unit horizontal area. Thus, the rice 

leaf reflectance r associated to a spatiotemporal-sampled An. 

arabiensis habitat cannot be inferred. The rice leaf 

reflectance r may only be determined if  is inferred in the 

An. arabiensis habitat model which may only be possible 

outside the “Lambertian-viewing” cone. These limitations 

may be predicated on the Lambertian leaf reflectance 

characteristics computed from the An. arabiensis habitat 

canopy structures and may not apply when rice leaf 

reflection has a pronounced specular component. To assess 

the limitations of field measurements in a planar scan, we 

can then reformulate an An. arabiensis habitat model using 

bidirectional reflectance estimates by a change in the 

coordinate system, expressing leaf orientation by two 

projection ratios of the rice leaf area. We may then be able to 

establish viewing solely in the solar principal plane. 

Commonly, the projection ratio q (i.e., projection of the rice 

leaf area on the principal plane divided by that on the 

horizontal plane) cannot be inferred in an An. arabiensis 

habitat model [1]. Characterization of the An. arabiensis 

habitat “hot spot”, for which the view direction is close to 

the direction of illumination, thus would have to be 

quantified using the expression for the bidirectional 

reflectance in terms of the width of the cone of the view 

angles around the direction of illumination. Determination of 

this cone width may, however, require narrow field-of-view 

measurements in the An. arabiensis habitat “hot spot” 

region, after other canopy model parameters have been 

determined from measurements outside the “hot spot”. 

In this research, bidirectional and hemispherical 

reflectance (i.e., surface albedo) estimates from a geometric-

optical model were used to quantify the effects of 
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topography on both the bidirectional reflectance distribution 

function (BRDF) and the hemispherical reflectance of a 

productive An. arabiensis habitat. Recently, the Li-Strahler 

geometric-optical model has been extended to accommodate 

sloping terrain in its computation of the BRDF and spectral 

surface albedo [5]. The model treated the rice-vegetation 

canopy of the sampled An. arabiensis habitat as an 

assemblage of partially illuminated objects of spheroidal 

shape. The model also employed geometric optics and 

Boolean set theory for generating the proportion of sunlit or 

shadowed canopy and background as functions of view and 

illumination angles. We then used a convex geometrical 

algorithm to check the pixel constituent material to 

determine their respective spectral endmember and 

abundance estimates. Thereafter, an Ordinary kriged-based 

interpolator was employed to forecast other prolific An. 

arabiensis habitats from the pixel spectral components 

quantitatively decomposed by the unmixing algorithm. If a 

spatial algorithm processes a pixel by utilizing means or 

covariances then the algorithm is statistical [7]. Our 

assumption was that predictive spatial autoregressive model 

generated using a quantitative robust QuickBird endmember 

pixel assessment may target highly productive An. arabiensis 

habitats for implementing control strategies in riceland 

environments. Therefore, our research objectives were to: (1) 

to construct a regression model to determine productive 

habitats based on spatiotemporal field-sampled count data 

(2) quantify bidirectional and hemispherical reflectance 

using a Li-Strahler model for estimating the spectral 

fractions of individual habitat surface components present in 

a 0.61m image pixel; (3) validate the endmembers generated 

use a convex geometrical algorithm and, (4) generate optimal 

predictors from an Ordinary interpolator using the 

productive habitat pixel radiance estimates for remotely 

forecasting prolific An. arabiensis habitats in Karima rice-

village complex, Mwea, Kenya. 

2. MATERIAL AND METHODOLOGY 

2.1. Study Site 

The study was conducted 112 km northeast of Nairobi, 

Kenya in Karima rice-village complex within the Mwea Rice 

Scheme. Mwea occupies the lower altitude zone of the 

Kirinyaga District, in an expansive low-lying, formally wet 

savannah ecosystem. The scheme is situated on the foot hills 

of Mount Kenya at 37
o
 20'E and 0

o
, 41'S. The Mwea Rice 

Scheme is located in the west central region of Mwea 

Division and covers an area of approximately 13,640 

hectares. More than 50% of the scheme area is used for rice 

cultivation. The remaining area is used for subsistence 

farming, grazing, and community activities. The mean 

annual precipitation is 950 mm, with maximum rainfall 

occurring in April–May and October–November. The 

average temperatures range from 16°C to 26.5°C. Relative 

humidity varies from 52% to 67%. According to the 2009 

Kenyan national census, the Mwea Rice Scheme has a 

population of 150,000, occupying 25,000 households. The 

Karima study site is located at the central-west region of the 

scheme and has 158 homesteads, with approximately 950 

residents. 

In Mwea, the beginning of each cropping or growing 

cycle is scheduled according to the water availability through 

the irrigation water distribution scheme. The schedule of 

individual farmers rice planting also differs within this time 

when water is available. Most fields are cultivated once a 

year, although some farmers cultivate a second crop. The 

typical cultivation cycle includes a sowing–transplanting 

period (June–August), a growing period (August–November) 

and a post-harvest period (November–December). The 

second crop is cultivated prior to the short rainy period 

between January and May. The duration of the rice cycle 

varies between 120 and 150 days, depending on the rice 

variety planted. After harvesting, active mosquito habitats 

may persist in shallow puddles left after harvest [1]. 

The start of the rice growing cycle begins with paddy 

preparation by pre-flooding the paddy with about 12cm of 

water. Farmers sow rice seeds into a small section (nursery) 

of their paddy to obtain single stemmed plants for 

transplanting throughout the paddy. For transplanting, the 

number of seedling plants is 3-4 seedlings per hill with a 

planting density is 20-30 hills per m
2
. Fertilizers in the form 

of Ammonium sulphate and triple super phosphate are 

applied at a rate of about 50 kg/ha and 125 kg/ha, 

respectively, about five days before transplanting. Studies by 

Mwangangi et al. [48] showed that dose amount of 

ammonium sulfate accounted for up to 40% mortality rate 

and one week delay in development time to An. arabiensis 

larvae. The actual amount of water used by farmers for land 

preparation and during the crop growth period, however, is 

much higher than the actual field requirement. Paddy 

farmers in Mwea often store water in their fields as a back-

up safety measure due to the unreliability in supply of water 

for irrigation. This leads to a high amount of surface runoff, 

seepage and percolation, accounting for about 50–80 percent 

of the total water input to the field creating active mosquito 

habitats. 

2.2. Habitat Sampling 

Base maps were generated in ArcGIS
®

 of the study site 

(Fig. 1). Field sampling was performed from June 2009 to 

June 2010. Permanent, semi-permanent and temporary and 

An. arabiensis habitat sites in the study site were classified 

and mapped using a CSI-Wireless Max differentially 

corrected global positioning system (DGPS) receiver 

employing a OmniStar L-Band satellite signal with a 

positional accuracy of less than 1m (Clarke Mosquito 

Control Products, Inc. 159 N. Garden Avenue. Roselle, IL 

60172) [49]. 

Water bodies were inspected for mosquito larvae using 

standard dipping techniques with a 350-ml dipper to collect 

the mosquito larvae [50]. The number of dips per habitat was 

20. All data from the habitat characterization of each larval 

habitat was recorded on a field sampling form. Larvae and a 

sample of water from each larval habitat were placed in 

whirl-pack bags and transported to the Mwea Research 

Station for further processing. All 3
rd

 and 4
th

 instar larvae 

were immediately preserved in 95% ethanol and later 

identified morphologically to species using taxonomic keys 

[51, 52]. The 1
st
 and 2

nd
 instars were reared in plastic pans 
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under semi-field conditions and those that survived to 3
rd

 

instar were also preserved and identified morphologically to 

species. The pupae were kept in mosquito emergent cages 

(Bioequip Products Inc) and the resultant emergent 

mosquitoes were identified morphologically. 

2.3. Aquatic Habitat Characterization 

Meteorological data was acquired from a Davis 

Instruments 6153-IP Ethernet Wireless Weather Station 

placed in a secured homestead within the study site. 

Environmental variables recorded for each habitat were 

number of aquatic animals, depth, distance to the nearest 

house, canopy coverage, shade, and turbidity. Distance to the 

nearest house was measured with a tape when it was shorter 

than 100 m. When the distance exceeded 100 m, it was 

estimated visually. The distance to the nearest house was 

categorized into 7 classes (e.g., 1: 50–100 m, 2: 101-200 m, 

and so on, and 7 for distances greater than 600 m). Canopy 

cover was defined as the amount of terrestrial vegetation and 

other objects in the habitat. The number of individuals of 

each family identified were counted and recorded. Shade 

coverage of a habitat was measured in percentage of water 

surface covered by placing a square frame (1m
2
) with grids 

(100 cm
2
) above the sampled habitat. 

2.4 Remote Sensing Data 

Raster image data from the DigitalGlobe QuickBird 

satellite service were acquired for the study site for the 

periods of: 15 July 2006, 1 September 2006, 1 February 

2007, and 15 July 2007 within the study site area. The 

QuickBird image data were delivered as pan-sharpened 

composite products in infra-red (IR) colors. The clearest, 

cloud-free images available of the contiguous sub-areas of 

the study site were used to identify land cover and other 

spatial features associated with An. arabiensis habitats. The 

Order Polygon contained 5 vertices consisting of longitude/ 

latitude (decimal degrees) geographic coordinates using a 

WGS-84 ellipsoid. The satellite data contained 64 km
2
 of the 

land cover in the study site. 

The QuickBird imagery was classified using the Iterative 

Self-Organizing Data Analysis Technique (ISODATA) 

unsupervised routine in ERDAS Imagine v.8.7™ (ERDAS, 

Inc., Atlanta, Georgia). Unsupervised classifications are 

commonly used for the identification of land covers and 

mosquito habitats associated with intermediate hosts and 

disease vectors [53-55]. QuickBird collects data using an 11-

bit dynamic range. This allowed 2
11

 or 2048 possible 

intensity values for each pixel. Because computers cannot 

read 11-bit data, Digital Globe delivered the data in an 8 bit 

format. The 8-bit data required that QuickBird 11-bit data be 

compressed as such data spanning 2,048 digital values was 

rescaled to 256 values. 

2.5. Habitat Mapping 

Each An. arabiensis habitat in the study site with their 

corresponding data attributes was entered into the VCMS™ 

relational database software product (Clarke Mosquito 

Control Products, Roselle, IL). The VCMS™ database 

supports a mobile field data acquisition component module, 

called Mobile VCMS™ that synchronizes field data from 

 

Fig. (1). Base map of the Karima study site. 
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industry standard Microsoft Windows Mobile™ devices and 

can support add-on GPS/DGPS data collection [56]. Mobile 

VCMS™ and its corresponding FieldBridge
®

 middleware 

software component were used to support both wired and 

wireless synchronizing of field data from the habitat 

monitoring. Field data collected with Mobile VCMS™ was 

synchronized directly into a centralized VCMS™ relational 

database repository. Additional geocoding and spatial 

display of the ecological data was handled using the 

embedded VCMS™ GIS Interface Kit™ that was developed 

utilizing ESRI’s MapObjects™ 2 technology. The VCMS™ 

database supported the export of all field data, using any 

combination of georeferenced An. arabiensis habitats at the 

study site, in order to further process and spatially display 

specific data attributes in a stand-alone desktop GIS software 

package (ESRI ArcGIS). 

The VCMS™ database plotted incoming DGPS ground 

coordinates of the sampled An. arabiensis habitats collected 

using a Trimble Recon
®

 X PDA (400MHz Intel PXA255 

Xscale CPU) and Mobile VCMS™ software. The data was 

divided into four equal quadrant sections of 120 Mb per 

quadrant as the total raw QuickBird image size was 655 Mb. 

This imagery was further processed into tiles making it 

suitable for display on the Recon X
®

. To process the imagery 

into smaller manageable datasets, we used pixel grids to 

draw a minimum-bounding rectangle around the image-

oriented map which was then divided into tiles. We specified 

an 8k x 8k pixel based on the amount of data in each tile 

using ERDAS Imagine 9.2
®

 software. 

ESRI ArcPad
®

 software was installed on the Recon X
® 

and we created an ArcPad folder on the C drive of our field 

computer (laptop PC) to connect and synchronize data with 

ArcPad on the PDA. The ArcPad
®

 Data Manager for ArcGIS 

Desktop, the Datum Configuration Tool and the ArcPad
®

 

Deployment Manager were copied into this folder, along 

with other ArcPad
®

 modules. This software was used to 

display and manipulate the QuickBird imagery on the Recon 

PDA field computer. 

2.6. Grid-Based Algorithm 

A polygon layer outlining each An. arabiensis habitat 

within a 1 km buffer was created by digitizing the QuickBird 

imagery in ArcGIS 
®

. Each cell within the matrix contained 

an attribute value, as well as habitat location coordinates, and 

was joined relationally to other databases. The spatial 

location of each cell was implicitly contained within the 

ordering of the matrix. The habitats were then characterized 

in relation to the ecological attributes sampled of an aquatic 

habitat. Each habitat/polygon was assigned a unique 

identifier. Field attribute tables were then linked to the 

polygons. The polygons were used to define the sampling 

frame, which extended to include a 1 km buffer from the 

external boundary of the Karima rice-village study site. A 

mark-release-recapture study in an area near Bamako, Mali, 

showed that An. arabiensis generally does not disperse 

further than 1 km [57]. In this research, digitized QuickBird 

grid cells were stratified based on LULC transition 

throughout the rice cycle and defined as: ploughed (paddy 

preparation), flooded, post-transplanted, tillering, flowering 

and fallow/post-harvest which were defined as: 

1) Ploughing: This LULC was the field preparation prior to 

transplanting of rice seedlings. 

2) flooding: This classification comprised of areas of 

intensive land use with much of habitat covered by water. 

3) Post-transplanting: This rice-cycle time period was 

following rice seedlings transplanting. 

4) Tillering: This class extended from the appearance of the 

first tiller until the maximum tiller (5-9) number was 

reached. During this phases stem elongation occurred and 

the tillers continued to increase in number and height, 

with increasing ground cover and canopy formation. 

5) Flowering and maturation: In this LULC the stage plants 

stopped growing and oriented towards the development 

of the panicles and plants senesce and their water content 

dropped. The flowering/maturation phase included the 

panicle initiation, booting, heading and flowering stages.  

6) Fallow/post-harvest: This period occurred after 

harvesting when the land was left bare waiting the next 

crop cycle (Fig. 2). 

Overall accuracy and class-specific user and producer 

accuracies were calculated for each of the resultant land 

cover classes. For each mapping region, stratified sampling 

formulas were applied to estimate the error matrix cell 

proportions [58], and consequently, the estimates of overall 

and class-specific user's and producer's accuracy [59]. In this 

research, the producer's accuracy related to the probability 

that a land cover class was correctly mapped and measured 

using the errors of omission (1 - producer's accuracy). In 

contrast, the user's accuracy indicated the probability that a 

sampled An. arabiensis habitat from the land cover map 

actually matched the information from the georeferenced 

datasets by measuring the error of commission (1- user’s 

accuracy). Accuracy results were computed by weighting the 

proportions of each land cover, within the study site, against 

total land cover area used in the sampling frame. 

Specifically, the overall accuracy P̂( )  and producer's 

accuracy P̂Aj( )  were estimated using post-stratified formulas 

[58]. Post-stratified estimators use the known pixel totals for 

each land-cover class (Ni+), treating the sample as a 

stratified random sample of ni+ pixels from the Ni+ pixels in 

that class [2]. In this research the user's accuracy P̂Ui( )  was 

based on the simple random sampling formulas: 

P̂ =
1

N

Nk+

nk+k=1

q

nkk                (1) 

P̂Ui = nii ni+           (2) 

P̂Aj =
N j+ nj+( )njj

Nk+ nk+( )nkj
k=1

q
         (3) 
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The spatial distribution of the sampled habitats were 

created as a layer and overlaid on the land cover layer, and 

the number of An. arabiensis habitats in each land cover 

class was calculated using Zonal stat, an avenue script in 

ArcView
®

 [Earth Systems Research Institute (ESRI), 

Redlands, California]. The chi-square analysis for the 

sampled field and remote explanatory predictor variables 

was used to examine whether there were significant 

differences in proportions of positive and negative sampled 

aquatic habitats in each grid cell located in different land 

cover classes. 

We tested the kappa statistics using different significance 

levels and the LULC covariates. In general, (kappa) 

independent significant tests the (alpha) level of null 

hypotheses the probability that there is no significant 

differences is (1-(alpha)
(kappa

) (1). In our analyses, the 

important factors for generating kappa probability statistics 

between the LULC covariates was to discover if the codes 

generated were equiprobable and to determine if the 

marginal probabilities for the classification data were similar 

or different. In this research we used equally arbitrary 

guidelines to characterize kappas over .75 as excellent, .40 to 

.75 as fair to good, and below .40 as poor. Three matrices 

were involved, the matrix of observed scores, the matrix of 

expected scores based on chance agreement and the weight 

matrix. Weight matrix cells located on the diagonal (upper-

left to bottom-right) represented agreement and thus 

contained zeros. Off-diagonal cells contained weights 

indicating the seriousness of that disagreement. The equation 

for weighted  was: k =1
wij xijj=1

k

i=1

k

wijmijj=1

k

i=1

k
 where 

k=number of codes and wij, xij, and mij were elements in 

the weight generated from the LULC classification. 

2.7. Object Oriented Classification 

ENVI
®

 (www.ittvis.com). spectral tools were used to 

analyze the QuickBird data, in order to confirm the location 

of varying states of rice crops. Jacob et al. [1] used ENVI for 

supporting Input File QuickBird functions including 

GeoTIFF, NITF and QuickBird Tile Product (.til) which 

segregated homogenous pixels of anopheline habitats. A 

prerequisite to classification is image segmentation, which is 

the subdivision of an image into separated regions [5]. Image 

objects resulting from segmentation represent image object 

primitives, serving as information carriers and building 

blocks for further invasive image classification or other 

segmentation processes [2]. In ENVI 4.5
®

, a spectrum plot, 

known as a Z-profile of the pixel under the cursor was run 

through all bands of the QuickBird image of the Karima 

study site. The basic workflow involved importing the data 

collected in the field into a spectral library. The spectral 

library then used the Endmember Collection workflow to 

perform a supervised classification based on the ecologically 

sampled An. arabiensis habitat data. Binary Encoding, 

Spectral Angle Mapper (SAM) and Spectral Feature Fitting 

were used to rank and match any unknown pixel spectrum to 

the An. arabiensis pixel materials in the spectral library. The 

Spectral Angle Mapper Classification (SAM) is an 

automated method in object-oriented classifications for 

directly comparing image spectra to a known spectra 

(usually determined in a lab or in the field with a 

spectrometer) or an endmember [20].  

In this research SAM was used for comparing image 

spectra to the spectral library. The algorithm determined the 

similarity between spectra by calculating spectral angle and 

then treated them as vectors in a space with dimensionality 

equal to the number of QuickBird bands. This method 

however was insensitive to the An. arabiensis habitat 

 

Fig. (2). Isolating paddy preparation An. arabiensis habitat pixels form a QuickBird land use cover map in the Karima study site. 

A. QuickBird visible and NIR data of study site within a 1 km buffer. 

B. An. arabiensis habitats classified by land use land cover (LULC) within a digitized grid-based algorithm . 

C. Paddy-preparation An. arabiensis habitat. 

D. Pixel’s of paddy preparation An. arabiensis habitat.  
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illumination estimates since the algorithm used only the 

vector direction and not the vector length. A smaller angle 

means a closer match between the two spectra and the pixel 

is identified as the field spectrum [2]. Because it used only 

the “direction” of the spectra, and not their “length,” the 

method was insensitive to the unknown gain factor, and all 

possible illuminations were treated equally. SAM 

determined the similarity of any unknown spectrum t to a 

reference spectrum r, by applying 

 

= cos 1

r
t

r
r

r
t

r
r

 which 

was written as = cos 1
tirii=1

nb

ti
2

i=1

nb

( )
1
2

ri
2

i=1

nb

( )
1
2

. For each 

reference spectrum chosen in the library, a spectral angle 

was determined. This angle in radians was assigned to the 

corresponding pixel in the output SAM image. The angles 

were subjected to thresholds to determine their class. 

The image endmembers of the An. arabiensis habitats 

were then extracted from ENVI’s spectral library. Several 

spectra corresponding to the same green rice-vegetation type 

over different backgrounds in the An. arabiensis habitats had 

to be included, since multiple scatterings between tillers and 

a bright soil background increased the QuickBird NIR 

reflectance of the tillers. After the calibration coefficients 

had been determined the image was converted to match the 

library. Analogously, the reference endmembers spectra in 

the library were transformed into the endmembers spectra of 

the image. 

We employed a method to empirically assess the 

classification accuracy of the QuickBird visible and NIR 

data by selecting LULC classes and comparing them with 

the reference data. In this research we used a random 

selection of pixels in each LULC class to assess the satellite 

classification accuracy. QuickBird class representative pixels 

were selected and compared to a reference training dataset. 

The delineation of training sites representative of land cover 

types for identifying anopheline habitat is most effective 

using the spectral properties of LULC classes [17]. During 

the segmentation procedure, image objects were generated 

based on several adjustable criteria of homogeneity such as 

color, shape, and texture. Data pre-processing involved 

converting DN to radiance, atmospheric correction using 

FLAASH
TM

, and co-registration. Image classification was 

done using the object-oriented approach. FLAASH
TM

 which 

generated a spatial model (.gmd file) that converted the 

image’s DN to at-sensor radiance and computed at-sensor 

reflectance while normalizing solar elevation angle. The 

equation was as follows: 

))180/*)90(((*

*)*( 2
+

=
COSE

DBiasGainL

BandN

BandNBandNBandN

BandN

 

where, 

BandN = Reflectance for Band N 

LbandN = Digital Number for Band N  

D = Normalized Earth-Sun Distance 

EbandN = Solar Irradiance for Band N 

The reference data in this research was the “ground truth” 

data of the sampled habitat predictor variables. Selected 

random pixels from the thematic map were then compared to 

the reference data. The estimated accuracy for LULC data 

was calculated using: 

P z
2

<
x n

n (1 )
< z

2

=1  

where, x was number of correct identified pixels, n was total 

number of pixels in the sample,  was the map accuracy, and 

(1- ) was a confidence limit.
 

The QuickBird classifier 

identified An. arabiensis habitats such as water bodies larger 

than 0.4 ha with generally satisfactory results (92.1%) with a 

lower detection limit of 0.1 ha. 

We expected the An. arabiensis habitat larval/pupal 

count in the study site to follow a Poisson distribution, as 

was the case in previous research in Kenyan irrigated 

riceland areas [1, 61, 62]. Therefore, we used the count data 

and standard deviations of the log-number of larval/pupal 

counts collected in the study site to determine sample size 

requirements. We applied a sampling intensity formula for 

determining the number of samples to collect from an 

infinite population n= (ts/E)^
2
 ,where t = t value (t  2), s = 

the standard deviation of log-larval/pupal count values 

observed in the study site (s= 0.889) and E was the desired 

half-width of the confidence interval around the mean 

expressed in same units as standard deviation (E= ln(1.25) 

[63]. Applying this formula we determined 152 samples 

were required. We overlaid vector images of the sampling 

scheme with the raster image of the study site to identify 

areas of interest (AOI) within the sampling frame for field 

crews to visit. All potential aquatic larval habitat sites were 

identified and data relative to species composition and 

abundance, predators, water quality and environmental 

parameters were collected longitudinally by field crews. 

2.8. Regression Analyses 

Field data parameters were entered in Microsoft Excel 

files and analyzed using and SAS 9.2
® 

(SAS inc. Carey, NC, 

USA). Before analyses the data was tested for collinearity 

using design matrix from a Poisson regression model and run 

through SAS PROCREG/ Variant Inflation Factor (VIF) 

procedure. Variance inflation factors are a measure of the 

multicolinearity in a regression design matrix (i.e., the 

independent variables). Multicollinear An. arabiensis 

explanatory variables are difficult to analyze because their 

effects on the response can be due to either true synergistic 

relationship among the explanatory predictor variables or a 

spurious correlation [1]. To avoid over parametrization of 

the model we added the VIF for each spatiotemporal-

sampled An. arabiensis variable. 

We considered the following linear model with k 

independent variables: Y = 0 + 1 X1 + 2 X 2 + ... + k Xk + 

. The standard error of the estimate of j is (X X)
1/2

j+1, j+1, 

where X was the regression design matrix — a matrix such 
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that Xi, j+1 was the value of the j
th

 covariate for the i
th

 for the 

spatiotemporal-sampled An. arabiensis observations, and Xi, 

1 equaled 1 for all i. 

In this research the variance was expressed as : 

var ˆ j( ) =
2

n 1( )var Xj( )
1

1 Rj
2

, where Rj
2
 was the 

multiple R
2
 for the regression of Xj of the sampled An. 

arabiensis habitat covariates. This identity separated the 

influences of several distinct factors on the variance of the 

coefficient estimate. The remaining term, 1 / (1  Rj
2
) was 

the VIF which reflected all factors that influenced the 

uncertainty in the coefficient estimates. The VIF equals 1 

when the design matrix is orthogonal and is greater than or 

equal to 1 when the design matrix is not orthogonal [64]. The 

VIF was invariant to the scaling of the An. arabiensis 

predictor variables, that is, we could scale each variable Xj 

by a constant cj without changing the VIF. The VIF was 

calculated in three steps. We calculated k different VIFs, one 

for each Xi by first running an ordinary least square 

regression that used Xi as a function of all the other sampled 

predictor variables in the first equation. We used the 

equation 
 
X1 = 2X2 + 3X3 +L+ k Xk + c0 + e , where c0 was 

a constant and e was the error term. We also used VIF= 1/1-

Ri
2
. We then calculated the VIF factor for 

i
ˆ  with the 

following formula: VIF =
1

1 Ri
2

 where R
2

i was the 

coefficient of determination of the regression equation. We 

then analyzed the magnitude of collinearity by considering 

the size of the VIF ˆ
i( ) . The var(Xj) revealed greater 

variability in the spatiotemporal-sampled An. arabiensis 

explanatory covariates which lead to proportionately less 

variance in the coefficient estimates. 

ANOVA test was also used to compare the differences in 

the An. arabiensis larval/pupal abundance among the rice 

stages. The regression line concept we used was 

yi y( ) = ŷi y( ) + yi ŷi( ) , 

where the first term was the total variation in the response y 

(total immature count of An. arabiensis), the second term 

was the variation in mean response based on the sampled 

parameters and the third term was the residual value in the 

model estimates. Squaring each of these terms and adding 

over all of the sampled observations rendered the equation 

yi y( )
2
= ŷi y( )

2
+ yi ŷi( )

2

. This equation was 

then written as SST = SSM + SSE, where SS was notation 

for sum of squares and T, M, and E were the notation for the 

model, and the residual variance error, respectively. In this 

research, the square of the sample correlation was equal to 

the ratio of the estimates while the sum of squares was 

related to the total sum of squares: r  = SSM/SST. This 

formalized the interpretation of r  as explaining the fraction 

of variability in the sampled An. arabiensis habitat 

parameters explained by the regression model. The sample 

variance sy  was equal to
yi y( )

2

n 1
, which in 

turn was equal to the SST/DF (degrees of freedom), the total 

sum of squares divided by the total DF. A linear regression 

equation was constructed using the mean square model 

(MSM)=
ŷi y( )

2

l
, which was equal to the 

SSM/DF. The corresponding mean square error (MSE) was 

( )
2

ˆ
2

n

yy
ii

, which was also equal to 

SSE/DF and also the estimate of the variance about the 

regression line (i.e., ). The MSE is an estimate of  for 

determining whether or not the null hypothesis is true [64]. 

ANOVA calculations were then displayed in an analysis of 

variance table. The null hypothesis for the ANOVA analyses 

was based on the average value of the dependent variable 

(i.e., larval/pupal count of An. arabiensis) which was the 

same for all sample groups tested. 

Generally, ANOVA used in vector mosquito data 

analyses tests the null hypothesis that all the sampled 

parameters of the population means are equal (i.e., H0: 1 = 

2 = ... = a), by comparing two estimates of variance [1, 62]. 

If the null hypothesis is false, then Mean Square Between 

(MSB) estimates generated from a linear predictive vector 

mosquito habitat model is something larger than  [1] The 

MSE is an estimate of variance for determining whether or 

not the null hypothesis is true, while the second estimate 

MSB is based on the variance of the sample means [64]. The 

logic by which our computed analysis of variance tested the 

null hypothesis was as follows: if the null hypothesis was 

true, then MSE and MSB was approximately the same since 

they were both estimates of the same quantity (i.e., )]; 

however, if the null hypothesis was false then MSB was 

expected to be larger than MSE, since MSB was estimating a 

quantity larger than .  

The ANOVA model encompassed all possible sources of 

variation in the spatiotemporal-sampled habitat data which 

allowed us to further test our research hypotheses. In this 

research, the significance test of the An. arabiensis habitat 

data also involved the ratio of MSB to MSE: F = MSB/MSE. 

The F-statistic was used to calculate the p-value. The P value 

or calculated probability is the estimated probability of 

rejecting the null hypothesis (H0) of a study question when 

that hypothesis is true [64]. Traditionally for anopheline 

mosquito models, if p < .05 the null hypothesis is rejected 

[47]. In this research the F ratio was approximately one, 

which indicated MSB and MSE were about the same. The 

residual regression output also indicated that the paddy 

preparation stage was associated with the highest immature 

An. arabiensis count throughout the rice cycle. 

We then checked for error in our regression model. If An. 

arabiensis habitat data are heteroscedastic, nonlinearly 

associated, or have outliers, the regression line is not a good 

summary of the data, and it is an error to use regression to 
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summarize the data [1]. To determine if measurement error 

in the response variable was normally distributed and had 

constant variance with predictors free of measurement error, 

we used a residual regression plot. A residual plot is a graph 

that shows the residuals on the vertical axis and the 

independent variable on the horizontal axis [5]. 

Heteroscedasticity, nonlinearity and outliers are easily 

visualized in a residual plot especially when using remotely-

sampled explanatory covariates [20]. A residual in a 

predictive vector habitat distribution model is the vertical 

difference between the Y value of an individual sampled 

habitat and the regression line at the value of X 

corresponding to that individual sampled habitat, for 

regressing Y on X. That is, if there are n pairs of 

measurements of X and Y: (x1, y1), (x2, y2), … , (xn, yn), then 

the equation of the regression line is y = a  x + b and the 

vertical residual e1 for the first datum is e1 = y1 - (a  x1 + b) 

The vertical residual for the second datum will be e2 = y2 - (a 

 x2 + b), and so on. The i
th

 vertical residual is then the 

amount by which the regression line at the i
th

 value of X 

misses the i
th

 value of Y—the error in using the regression 

line to estimate the i
th

 datum [47]. For regressing X on Y, a 

residual is the horizontal difference between the X value of 

the individual and the regression line at the value of Y 

corresponding to that individual [20].  

Since plotting the residuals as a function of the 

"independent" sampled An. arabiensis explanatory predictor 

variable could determine whether the regression was 

computed correctly, in this research we generated a plot of 

the residuals against the corresponding values of the 

independent variable (i.e., residual plot) . It was essentially a 

scatterplot of the n sampled An. arabiensis habitat data (x1, 

e1), (x2, e2), … , (xn, en). A residual plot for a predictive An. 

arabiensis habitat model is like a scatterplot of the original 

sampled data, but with (a xi + b) subtracted from the value 

of yi for each point (xi, yi), i = 1, 2, … , n[ 1]. In this research, 

subtracting the regression line from the spatiotemporal-

sampled habitat data removed from Y any overall average 

and any trend with X.  

We then generated an equation of the regression line 

from the spatiotemporal-sampled An. arabiensis habitat 

parameters which was y = a x+ b, where a = rXY  

SDY/SDX and b = mean(Y) - a  mean(X). The vertical 

residuals were ei = yi - (a xi + b), or i = 1, 2, … , n. The 

mean of the residuals was1/n)  (e1 + e2 + … + en) = (1/n)  ( 

y1 - (a x1 + b) + y2 - (a x2 + b) + … + yn - (a xn + b) ) = 

(1/n)  ( y1 + y2 + … yn - a  (x1 + x2 + … + xn) - n b) SDe = 

(1 - rXY
2
) SDY.) The sum in the first set of square brackets 

was rXY SDX SDY, and the sum in the second set of square 

brackets is (SDX)
2
, so rXE = c  rXY SDX SDY - c a (SDX)

2
 

= c  (SDX)
2
  [rXY SDY/SDX - a]. In this research the 

regression line was a = rXY SDY/SDX, so the term in square 

brackets was zero.  

The regression line did not pass through all the An. 

arabiensis data points on the scatterplot exactly unless the 

correlation coefficient was ±1. In general, the data were 

scattered around the regression line. Each datum had a 

vertical residual from the regression line; the sizes of the 

vertical residuals varied. The root mean square (rms) of the 

vertical residuals measures in a predictive vector habitat 

model is the vertical distance of a datum from the regression 

line [1]. Thus, the rms of the vertical residuals in this 

research was a measure of the typical vertical distance from 

the spatiotemporal-sampled An. arabiensis habitat data to the 

regression line, which also was the error in estimating the 

value of Y by the height of the regression line. We then let 

the An. arabiensis habitat predictor variables be grouped as 

(xi,yi), i=1, … , n. The vertical residual of the ith point was 

yi- (predicted yi)=yi-(r SDY/SDX  xi + mean(Y)-r SDY/SDX 

 mean(X)) which was equal to (yi- mean(Y)) - r SDY/SDX 

 (xi - mean(X)). The square of the ith vertical residual was 

[yi- (predicted yi) ]
2
=[(yi- mean(Y))-r SDY/SDX (xi-

mean(X))]
2
=(yi-mean(Y))

2
-2 r SDY/SDX  (xi-mean(X)) (yi 

-mean(Y)) + (r SDY/SDX (xi - mean(X)
2
. We then computed 

the sum of those squares for the An. arabiensis habitat data (i 

= 1, 2, … , n). Note that in this research SDY=[[(y1- 

mean(Y))
2
 + (y2- mean(Y))

2
 + … + (yn- mean(Y))

2
 ]/n] , so 

(y1- mean(Y))
2
 + (y2-mean(Y))

2
 + (yn- mean(Y))

2
=n (SDY)

2
. 

Also note that r=[ [(x1-mean(X))/SDX] [(y1- mean(Y))/SDY] 

+ [(x2–mean-(X))/SDX] [(y2-mean(Y))/SDY] + [(xn-mean-

(X))/SDX] [(yn-mean(Y))/SDY]]/n, so (x1-mean(X)) (y1- 

mean(Y)) + (x2-mean(X)) (y2- mean(Y)) + (xn-mean(X)) (yn 

- mean(Y)) = r n SDX SDY. We then considered the first 

term in the square of the vertical residuals. We also added 

the corresponding terms for i=1, … , n, which had (y1- 

mean(Y))
2
 + (y2- mean(Y))

2
 + (yn- mean(Y))

2
 = n (SDY)

2
. 

Similarly, the sum of the second terms for i = 1, …, n, 

generated -2 r SDY/SDX  [(x1-mean(X)) (y1- mean(Y)) + 

(x2-mean(X)) (y2- mean(Y)) + (xn-mean(X)) (yn- mean(Y))] 
= -2 (SDY)

2
r n r = -2 n r

2
(SDY)

2
. The sum of the third 

terms for i = 1, …, n, gave (r SDY/SDX)
2

 [(x1-mean(X)))
2
 

+ (x2-mean(X)))
2
 + (xn-mean(X)))

2] = (r SDY/-SDX)
2

 n  

(SDX)
2 

= n r
2

(SDY)
2
. The sum of the squares of the vertical 

residuals in the An. arabiensis habitat model was thus n 

(SDY)
2
-2 n r

2
(SDY)

2
 + n r

2
(SDY)

2
 which was 

equivalent to the total number of sampled An. arabiensis 

habitat parameters (n) (SDY)
2

(1-2 r
2
+r

2
)= n (SDY)

2
 (1 - 

r
2
). To get from the sum of the squares of the vertical 

residuals to the rms of the vertical residuals, we divided by n 

and took the square-root: rms (i.e., vertical residuals)=[n 

(SDY)
2

 (1-r
2
)/n ] =SDY  (1 - r

2
) . The model revealed 

that the rms of the vertical residuals from the regression  (the 

rms error of regression) was (1 - r
2
)

1/2
SDY. The rms error of 

regression is usually between 0 and SDY in a predictive 

vector habitat model [1]. The error estimate was zero when r 

was ±1 and SDY when r= 0. When r was ±1, and the rms of 

the vertical residuals was zero. The regression, thus, 

accounted for all of the variability of Y. When r was equal to 

0, however, the regression line did not explain any of the 

variability of Y. In the model the regression line was a 

horizontal line at height mean (Y), so the rms of the vertical 

residuals from the regression line was the rms of the 

deviations of the sampled An. arabiensis habitat values of Y 

from the mean of Y, which was by definition, the SD of Y 
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[20]. When r was not zero, the regression accounted for 

some of the variability of Y, so the scatter around the 

regression line was less than the overall scatter in Y.  

2.9. Inverted Geometric-Optical Model 

In this research we used the Li-Strahler geometric-optical 

model [65] based on the assumption that the Bidirectional 

Reflectance Distribution Function (BRDF) was a purely 

geometric phenomenon resulting from a paddy preparation 

An. arabiensis habitat scene of discrete three dimensional 

objects being illuminated and viewed from different 

positions in the hemisphere. The inverted Li-Strahler 

geometric-optical model was used to retrieve specific 

spectral habitat explanatory predictor variables. The 

reflectance associated with a sampled habitat was treated as 

an area-weighted sum of four fixed reflectance components: 

sunlit canopy, sunlit background, shaded canopy, and shaded 

background. In most geometric-optical models these four 

components could be simplified to three: sunlit canopy–C, 

sunlit background–G and shadow–T [18]. In this research, 

the endmember spectral components were derived using G, 

C, T components’ classes which were initially estimated by 

the QuickBird image using ENVI
®

. For inverting the model, 

parts of the three components represented by (Kg) was 

calculated using: 

Kg = e
M sec i( )+sec v( ) O i , v ,( )

     (2.1) 

O i , v ,( ) =1 sec i + sec v( ) t sin t cos t( )    (2.2) 

cos t =
h tan i tan v cos

r sec i + sec v( )
     (2.3) 

M =
ln Kg( )

sec i + sec v( ) t + cos t sin t( )
    (2.4) 

CC =1 e M        (2.5) 

where, I q u q were the zenith angles of illumination and 

viewing, O was the average of the overlap function between 

illumination and viewing shadows of individual sampled 

habitats as projected onto the background and j was the 

difference in azimuth angle between illumination and 

viewing. 

In our BRDF analyses, the An. arabiensis habitat pixel 

was modeled as the limit of its directional reflectance factor 

using R i, v( ) : R i, v( ) =
R s( ) i, s v, s

A
Ii s( ) Iv s( )ds

A cos i v

where ds  

was a small Lambertian surface element over area A  of the 

QuickBird pixel; ( )sR  was the reflectance of ds ; i , v , 

and s  represented the directions of illumination and viewing 

based on the reflectance components, respectively. In our 

model .,. was the cosine of the phase angle between two 

directions;  was the zenith angle of a direction; Ii s( )  and 

Iv s( )  were indicator functions, equal to one when ds  was 

illuminated Ii( )  or viewed Iv( )
 
or zero otherwise. Solving 

our double integral equation revealed s that ds  was 

integrated over the decomposed QuickBird pixel (i.e., the 

footprint of the sensor’ s iFOV) . 

In this research, there were two kinds of prominent 

habitat surfaces in the pixel spectra; A -background surface 

was represented by Lambertian reflectance G  and C , 

respectively. As such then re-wrote equation [1] as 

R i, v( ) = KgG +
C

A

i, s

cos i

v, s

cos v
Ac

ds , where Kg = Ag A  

which was the proportion of background spectral data 

illuminated and viewed generated by the imaged An. 

arabiensis habitat attributes. In this equation the union of Ag  

and Ac  were the intersection of the dataset of An. arabiensis 

habitat surface elements which were illuminated and viewed, 

only when v  and i  coincided. The directional reflectance of 

the habitat scene depended also on the habitat feature 

reflectance related to G  and C .  

In our analyses we focused on the two terms of 

R i, v( ) = KgG +
C

A

i, s

cos i

v, s

cos v
Ac

ds . The first term described 

how the sunlit background proportion proceeded to a 

maximum point as viewing and illumination positions in the 

hemisphere coincided. The second term described how the 

sunlit An. arabiensis habitat surface, composed of the 

Lambertian facets, became maximally exposed to view at the 

hotspot, while those facets on tops became dominant at large 

viewing zenith angles. The hot spot correlation effect refers 

to the observed brightening which can occur when viewing a 

scene from the same direction as the solar illumination [20] 

which for predictive vector insect habitat modeling is 

commonly, noted in the visible and NIR spectral regions [60-

62].  

We then analyzed how the first term KgG  varied with 

illumination and viewing geometry. As in, Schowengerdt 

[20] we assumed that the spatial object of interest (i.e., An. 

arabiensis habitat) and its associated explanatory spectral 

covariates had the shape of a spheroid, with vertical half-axis 

equal to b , horizontal radius equal to R , and a height to the 

center of the spheroid h . To accommodate the spheroidal 

shape in the derivations of the shadowed habitat areas, we 

used the transformation = tan 1 b

R
tan . We solved this 

equation by replacing  with the angle that generated the 

same shadow area for a sphere. For simplicity, we assumed 

that the centers of the spheroids were randomly distributed in 

depth from 
1
h  to 

2
h  over A . We then assumed that G  and 

C  were constant as average signatures over gA  and 
c
A  for 

properly modeling Kg  and Kc = Ac A . 

Next the equation R i, v( ) = KgG +
C

A

i, s

cos i

v, s

cos v
Ac

ds  was 

used where 
gK  was expressed in a Boolean model and 

Kg = e
R2 sec i+sec v O i , v ,( )

 where O i , v , ,( )  was the 
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average of the overlap function O i , v , ,h( )  between 

illumination and viewing shadows of the An. arabiensis 

habitat and its associated features. Furthermore,  was the 

difference in azimuth angle between viewing and 

illumination positions of the QuickBird imaged objects 

associated to the An. arabiensis habitat. To simplify the 

equation, we approximated the overlap function by the 

overlap area and center positions of the ellipses. This 

approximation is justified when solar zenith and viewing 

zenith angles are not too large [20]. In the case of long 

ellipsoidal shadows, however, this approximation could have 

overestimated the width of the An. arabiensis habitat hotspot 

in the azimuthal direction and underestimated the width of 

the hotspot in the azimuthal direction. To improve the 

accuracy and preserve the proper An. arabiensis hotspot 

width information, we developed another approximation as 

follows. We used the equations 0=  or =  . Then we 

considered the overlap function in the principal plane. We 

used W 0=  or  as the elliptical illumination and then 

determined if viewing shadows were aligned in the same 

direction. The overlap area was approximated by an ellipse 

with one axis equal to the overlap length and the other equal 

to the An. arabiensis habitat width encompassing the pixel 

spectral components which after quantification 

yielded

O i , v ,( ) =
1

2
sec i + sec v

h

b
tan i tan v cos . 

When the overlap area was zero, the An. arabiensis 

habitat hotspot effect disappeared. We found that the shape 

of the hotspot function based on the viewing and 

illumination positions diverged due to the shape and height 

of the spheroids. The equation Kg = e
R2 sec i+sec v O i , v ,( )

 

was helpful to understand how the shape of the An. 

arabiensis habitat governed the shape of overlap functions. 

Since in this research it was important to have an exact 

solution for overlap function on the principal plane, we  

used:
 
O i , v ,( ) = t sin t cos t( ) sec i + sec v( )  where 

cos t =
h tan i tan v cos

b sec i + sec v( )
. Our strategy was to generate 

an exact overlap function where v = i  and  varied from 

0  to 2  on the principal cone using a hybrid of geometric 

optical and radiative transfer model for remotely capturing 

bidirectional reflectance over the discontinuous riceland An. 

arabiensis habitat canopy.  

In our model the viewing zenith was still v  but, the 

viewing direction had a different azimuth than the 

illumination position. Rather than computing the overlap of 

ellipses emitted from the An. arabiensis habitat, and its 

components, at arbitrary inclinations and distances directly, 

we instead fit a linear function to the diminution of the 

overlaps generated from the azimuth angles. We 

approximated =
4R

h tan v + tan i( )
as the azimuthal cutoff of 

the An. arabiensis habitat hotspot and linearly interpolated 

for  between 0  and  or . For the case < , we 

assigned O i , v ,( ) =O i , v , =( )  for all  between  and 

. Though this approximation we were able to quantify any 

errors in the overlap area. We then used the residual output 

from the equation O i , v ,( ) =
1

2
sec i + sec v

h

b
tan i tan v cos

 

to conclude that the azimuthal width of the An. arabiensis 

habitat hotspot effect was basically determined by hR  

ratio, that the outward width of hotspot on the principal 

plane was determined by b h  ratio and that the inward width 

was determined by both. 

We then wanted to determine the contribution of sunlit 

canopy habitat surface habitat explanatory predictor 

variables and their shading effects. In this research, the effect 

of sunlit canopy on the bidirectional reflectance was 

quantified using the second term in equation 

R i, v( ) = KgG +
C

A

i, s

cos i

v, s

cos v
Ac

ds . This variation was depen-

dent on the both the density and angular distribution of ds  

in the equation. Zhang et al [19] assumed that each object in 

a scene could be modeled as a sphere without mutual 

illumination shading between ds  elements. Then the second 

term was approximated as:

 
KcC =

1

2
1+ i, v( ) 1 e R 2 sec v( )C . In 

this expression, the first term was the illuminated proportion 

of the area of a single sphere viewed at position v  and 

illuminated at position i . This was weighted by the second 

term which was the proportion of the area of spheres visible 

from zenith angle 
v

. Since both terms varied smoothly 

between zero and one, this contribution to the An. arabiensis 

habitat hotspot was quite flat. For generating a spheroid, we 

then replaced i, v  by i , v , where 

i , v = cos i cos v + sin i sin v cos . 

The first term in equation was 

KcC =
1

2
1+ i, v( ) 1 e R 2 sec v( )C ; however, this equation 

ignored the problem of mutual shading of the An. arabiensis 

habitat canopy components. This problem was handled by 

multiple integration, in which the mutual shadowing of 

canopies and other associated objects were treated in the 

same way as the mutual shading of leaves, for example. Our 

objective in this research, however, was to derive a simple 

approximation to describe the effect of the habitat canopy 

cover covariates based on collections of individual discrete 

reflectance surface values. To carry this out, we developed 

an approach that applied one-stage geometric optics to deal 

with the relationship between the sub-pixel endmember 

reflectance spectra of the An. arabiensis habitat surface 

components that were mutually shaded in the illumination 

direction and the parts mutually shaded in the view direction.  

2.10. Linear Spectral Unmixing Based Technique 

We then used a linear spectral unmixing model to 

calculate the percentages of the individual An. arabiensis 

habitat pixel components contained in the QuickBird image. 
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The model assumed that the reflectances S( )  of each pixel 

were a linear combination of endmembers R( ) , which were 

the reflectance spectra for each habitat component. The 

general equations used in this research were: 

Sj = K i Ri, j + vj
i=1

m

  j =1, 2, ..., p    (2.6) 

1= K i

i=1

m

   Ki >= 0        (2.7) 

where m  was the number of components, m  was the three 

components of C , G , and T ; p  is the number of image 

bands; K  was the fractional abundance of each paddy 

preparation An. arabiensis habitat component within the 

pixel and v  was the residual for each QuickBird visible and 

NIR band. 

The fractions of the An. arabiensis habitat endmember 

component within the QuickBird pixel were revealed. In 

practice, for deriving the endmembers, we need a test image 

with at least n pixels, and the number of n must be more than 

the number of components [2]. Thus, in this research, we 

used the equation Sj = K i Ri, j + vj
i=1

m

e which was more 

conveniently expressed in matrix notation as 

jjj RKSV *=
 
where; 

Vj : n-dimensional vector of the residuals in band j ; 

Sj : n-dimensional vector of the pixels’ reflectance in 

band j ; 

K : n x m matrix of the fractions; 

Rj : m-dimensional vector of the components’ reflectance 

in band j . 

We saught a set of numerical values for the unknowns in 

jR  such that the sum of the residual squares became as 

minuscule as possible and then the least square solution for 

Rj  was: 

Vj Vj( )
Rj

= 0           (2.8) 

Rj = K K( )
1
K Sj         (2.9) 

The three components’ endmembers were then calculated 

after applying equation (2.9) to every spectral band in the 

QuickBird image of the sampled An. arabiensis habitat in the 

dataset. 

We used UNIMAX to create fraction images of a prolific 

An. arabiensis habitat images. The unmixing algorithms 

were based on the following model, which assumed that a 

spectrum is a linear superposition of endmembers:  

Rk = ai Ei,k + k

i

n

 RMSE = k
2

k

m m

 

Rk  Reflectance of source wavelength k  

Ek ,i  Reflectance of endmember i  at the wavelength k  

ai  Abundance of endmember i  

k
 Error at wavelength k  

RMSE  Root mean square error of the 
k

 

n  Number of endmembers 

m  Number of wavelengths in the discrete spectrum 

All algorithms in this research were given in nanometers 

(BEAM's default wavelength unit). The input signatures 

were assumed to represent spectral classes. The output 

fraction images stored values indicating the percentage of 

each sub-pixel estimate that composed the paddy preparation 

An. arabiensis habitat. UNMIX separated every habitat sub-

pixel composition. UNMIX inputs observations of 

particulate pixel composition and seeks to find the number, 

composition, and contributions of the endmember data 

contributing sources or source types [2]. In this research 

UNMIX was also used to produce estimates of the 

uncertainties in the spectral predictors. UNMIX inputted the 

field and remote-sampled data in tabular format as flat 

ASCII files. The parameters used in UNMIX in this research 

was controlled by the following global parameters:  

DBEM Endmember Signature Segment List  

DBOC Database Output Channel List  

RMSCHAN RMS-Error Output Channel  

DBIW Database Input Window   

RANGE Min and Max Digital Numbers  

NORM Normalization: YES/NO   

REPORT Report Mode: Term/Off/Filename  

We specified the name of the database which contained 

the QuickBird image channels and endmember signatures of 

the sampled paddy preparation An. arabiensis habitat as 

EASI>FILE="QBfilespec." We then specified the segment 

numbers to be used as endmember signatures. The An. 

arabiensis habitat reference signature was then created using 

EASI>DBEM=i,j,k. The ranges of segments were specified 

with negative values. Signature segments were specified. We 

specified the output channels to receive the spectral 

endmember fractionalized data. There was one output 

channel for the input signature segment 

(EASI>DBOC=i,j,k). RMSCHAN was then used to specify 

the output channel to receive the residual error image as 

EASI>RMSCHAN=i. The DBIW specified the database 

input window to be unmixed as EASI>DBIW=Xoffset, 

Yoffset, Xsize, Y size. The RANGE was specified by the 

minimum and maximum output values which were used for 

scaling the fractionalized data. Note, that since unscaled 
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fraction image values can be outside the range of 0 to 1, then 

it is possible for the scaled output channels to contain values 

outside the range specified by RANGE [2]. In this research 

the default values for RANGE was 0 and 255. Additionally, 

EASI>RANGE=min,max specified whether output channels 

were to be normalized or not.  

UNMIX performed the unmixing given the set of paddy 

preparation An. arabiensis habitat class segments (DBEM) 

created by the program. The signature was created using a 

training site bitmap. The output fraction images (DBOC) 

contained values which represented the percentage that of 

pixel constituents in the An. arabiensis habitat. The RMS 

(root mean squared) error was saved as RMSCHAN. 

Before scaling, the output fractionalized image contained 

values which represented percentages between 0.0 and 1.0. 

Ideally, the sum of all unscaled fraction images should add 

up to approximately 1.0 at each pixel location [66]. The 

RANGE parameter was then used to specify the desired 

scaled output values which correspond to the unscaled values 

of 0.0 and 1.0 respectively. The RANGE defaulted to 0 and 

255. 

By default, the output image of the An. arabiensis habitat 

was not normalized (NORM="NO"). If the last class 

signature specified by DBEM represented a shadow area to 

be removed from the data, then normalization 

(NORM="YES") removed the effect of shadow from the 

habitat signature before saving the output. It is very 

important in spectral unmixing that the shadow area be 

specified as the last signature segment [66]. In our analyses 

we focused on the two terms of 

R i, v( ) = KgG +
C

A

i, s

cos i

v, s

cos v
Ac

ds . The first term described 

how the sunlit background proportion proceeded to a 

maximum point as viewing and illumination positions in the 

hemisphere coincided. The second term described how the 

sunlit An. arabiensis habitat surface components composed 

of the Lambertian facets, became maximally exposed to view 

at the hotspot, while those facets on tops became dominant at 

large viewing zenith angles. The hot spot correlation effect 

refers to the observed brightening which can occur when 

viewing a scene from the same direction as the solar 

illumination [8] which for predictive vector insect habitat 

modeling is commonly, noted in the visible and NIR spectral 

regions [61]. 

2.11. Ordinary Interpolation Analyses 

Spatial linear predictors generated from the paddy 

preparation An. arabiensis habitat were then generated using 

an Ordinary kriged-based interpolator. The Ordinary kriging 

algorithm was used to generate predictive maps of all 

productive habitats in the QuickBird image. Ordinary kriging 

was selected to interpolate the value Z(x0), (i.e., an immature 

paddy preparation An. arabiensis habitat count value), Z(x), 

at an unobserved habitat location x0 from the field and 

remote-sampled explanatory covariates, and zi = Z (xi), i = 

1..., n at nearby habitat locations, x1, xn. [67]. In this 

research, Ordinary kriging was computed as a linear 

unbiased estimator, (xo) of Z(x0) based on a stochastic 

model of the spatial dependence quantified by the variogram 

(x,y) or by expectation μ(x) = E[Z(x)] and the covariance 

function c(x,y) of the random field. The kriging  

estimator was given by a linear combination of the  

algorithm : Ẑ(xo) = wi(xo)Z(xi)
i=1

n

 using the endmember  

dataset of zi = Z(xi) with weights wi (xo), i = 1,...,n  

chosen, such that the variance  was calculated using:  

k
2 (x0 ) :=Var(Ẑ(x0o) Z(x)) =

i=1

n

j=1

n

wi (x0 )wj (x0 )c(xi , x j )+Var(Z(x)) 2
i=1

n

wi (x0 )c(xi , x0 )  which 

was  further minimized using: E[Ẑ(x) Z(x)] =
i=1

n

wi (x0 )μ(xi ) μ(x0 ) = 0 . 

This spatial interpolation method has been used for 

generating semivariograms and global autocorrelation 

statistics, in ArcGIS
®

 Geostatistical Analyst, for habitats of 

anopheline mosquito habitats in two urban environments in 

Kenya (62).  

In this research, the dependent variable was the spectral 

endmembers of the sampled habitat, which was transformed 

to fulfill the diagnostic normality test prior to performing 

kriging. The kriging weights of Ordinary kriging were used 

to fulfill the unbiasedness condition in the spatial 

interpolation of the ecologically sampled datasets 

using i

i=1

n

= 1 which was given by the Ordinary kriging 

equation system: 

 

1

M

n

1

=

(x1, x1 ) L (x1, xn ) 1

M O M

(xn , x1 ) L (xn , xn ) 1

1 L 1 0

1
(x1, x

* )

M

(xn , x
* )

1

 

The additional parameter μ was a Lagrange multiplier 

used in the minimization of the kriging error, ( )x
k

2 , to 

maintain the unbiasedness condition in the ecological dataset 

We considered the optimization problem using maximize f(x 

,y) subject to g(x,y)=c. We introduced a new variable ( ) 

(i.e., Lagrange multiplier) where the function was defined by 

x, y,( ) = f x, y( ) + g x, y( ) c( ) . 

The  term was added. If (x, y) is a maximum for the 

original constrained problem, then there exists a  such that 

(x, y, ) is a stationary point for the Lagrange function 

(stationary points are those points where the partial 

derivatives of  are zero) [49]. The Ordinary kriging was 

given by: 

 

Ẑ(x* ) =

z1
M

zn
0

'
(x1, x1 ) L (x1, xn ) 1

M O M M

(xn , x1 ) L (xn , xn ) 1

0 L 1 0

1
(x1, x

* )

M

(xn , x
* )

1

 

The Ordinary kriging error was given by: 

 

var(Ẑ(x* ) Z(x* )) =

(x1, x
* )

M

(xn , x
* )

1

(x1, x1 ) L (x1, xn ) 1

M O M M

(xn , x1 ) L (xn , xn ) 1

1 L 1 0

1
(x1, x

* )

M

(xn , x
* )

1

 

Conventional classification techniques require extensive 

ground truth information [68]. In this research, a confusion 
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matrix was calculated by comparing the predicting An. 

arabiensis habitat location and class of each ground truth 

pixel with the corresponding location and class in the 

predictive spatial linear model. Each column of the 

confusion matrix represented a ground truth class and the 

values in the column corresponded to the classification 

image's labeling of the ground truth pixels. Fortunately, the 

spectral characteristics of an unknown pixel in a Gaussian 

probability distribution using the spectral signature of the 

training data work on a pixel support or spatial resolution 

using classified land cover, which limits the amount of 

validation required to calibrate the final model [68]. The 

overall accuracy of the predictive estimates generated from 

the spectral decomposition of the QuickBird visible and NIR 

data of a paddy preparation An. arabiensis habitat was 

calculated by summing the number of pixels classified 

correctly and dividing by the total number of pixels. The 

pixels classified correctly were found along the diagonal of 

the confusion matrix table which listed the number of pixels 

that were classified into the correct ground truth class. 

RESULTS 

The relative abundance of the riceland An. arabiensis 

habitats were identified by the digitized grid. The overall 

accuracy of the land cover classification from the QuickBird 

image was 0.94 (P < 0.0001) for the riceland study site. 

Generally, the frequency of confusion of the classification 

was low. Overall, instances of confusion were minimal and 

did not affect user’s classification accuracy for the study 

sites. The user’s accuracy ranged between 92 and 97%, with 

relatively low errors of commission (excesses), and the 

producer’s accuracy ranged between 91 and 98 % for the 

LULC classification. 

Table 1 lists the dependent and independent variables 

collected in the study site. The count of An. arabiensis 

larvae/pupae collected at a habitat has a mean of 4.7, with a 

standard deviation of 5.6. The median count was 5 

Anopheles larvae/pupae and the count range from 0 to 41 

Anopheles larvae. The distribution was right skewed with 

75% of the habitats having 4 or less larvae. Significant 

correlations exist between some of the independent variables 

including study site and number of tillers, (r=-0.23, 

p=0.004). 

Table 2 revealed the abundance of riceland An. 

arabiensis larvae/20 dips collected in the habitats at the 

Karima study site. In the study site, the difference in the 

abundance of pupae and 1
st
, 2

nd 
and 3

rd 
instars larvae 

collected in paddy preparation and other anopheline habitats 

was not significant (P > 0.05). The 4
th 

instars larvae; 

however, was significantly higher in the paddy preparation 

habitats than in the other habitats. (t = 5.19, df 179, P < 

0.05). 

The regression analyses identified depth of habitat as 

significantly influencing the count of An. arabiensis 

Table 1. Information Collected in the Rice Fields of Karima Study Site  for Analysis in SAS 

Variable Description Units 

Anopheles count Total larval/pupal count (dependent variable) Count 

Tillers Density Number/Square meter 

Depth Field depth Centimeters 

Canopy Canopy cover Percent 

Turbidity Turbidity status 0 = not turbid, 1 = turbid 

Disanimal Distance to animal Meters 

 

Table 2. The Mean Number of An. Arabiensis Larvae Collected (Mean ± SE) Per 20 Dips in Paddies Containing Different Stages of 

Rice Growth Using Field Sampled and QuickBird 0.61 m Visible and Near Infra-red (NIR) data in Karima Rice-Village 

Complex 

Paddy category Number of 

habitats 

1
st
 instars 2

nd
 unstars 3

rd
 instars 4

th
 instars Pupae 

Paddy preparation 30 8.02 9.00 8.89 3.22 0.99 

Ploughed 25 1.41 0.95 0.09 0.00 0.36 

Flooded 23 1.67 1.10 0.30 0.00 0.36 

Tillering 28 2.00 6.67 2.00 1.20 0.67 

Flowering/maturation 27 0.01 0.00 0,02 0.01 0.00 

Fallow 27 1.00 0.67 0.00 0.00 0.01 
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mosquitoes in the study site. Mwangangi et al. [69] used a 

backward linear regression model and determined that 

abundance of An. arabiensis larvae at any of the rice 

growing phases included water depth, in paddy 

preparation habitats in the Mwea rice fields. By specifying 

coefficient estimates in a Bayesian conditional 

heteroskedastic framework, Jacob et al. [1] found depth of 

habitat was found to be a significant predictor positively 

associated with anopheline habitats. 

The Feature Extraction Module in ENVI
®

 allowed quick 

and accurate extraction of a paddy preparation An. arabiensis 

habitat from the QuickBird visible and NIR data (Fig. 3). 

The library was resampled by averaging intermediate values 

to match QuickBird bandwidths; values between two bands 

were considered as zero during averaging original and 

resampled spectra with the full width at half maximum 

(FWHM) for each of the bands. The FWHM is a measure of 

the width of the line at a point that is half the line's peak 

value in a either an emission or absorption spectrum [62]. 

The paddy preparation An. arabiensis habitat pixel was then 

isolated from the LULC map. 

The endmembers in the paddy preparation An. arabiensis 

habitat then was used to estimate the set of distinct spectra 

that comprised the mixed QuickBird pixel in the riceland 

scene. The inversion stage produced abundance planes that 

provided estimates of the fractional abundances for the 

endmembers in the decomposed pixel. An exact overlap 

function was also generated where 
iv

=  and  varied 

from 0  to 2  on the principal cone using a hybrid of 

geometric optical model for remotely capturing bidirectional 

reflectance over discontinuous plant riceland An. arabiensis 

canopies. According to our model, mutual shadowing of 

illumination did d not change the ratio Kc 1 Kg( ) . This 

ratio was itself denoted Kc
 which we used to generate u 

Ac A  for determining consistency with Kg where the 

mutual shadowing in illumination and viewing directions 

was independent of Ac A  for consistency with 
gK   

 In the direction of illumination, the An. arabiensis 

habitat had an area R2 sec i , and the total projected area 

was then calculated to be R2 sec i , if there was no 

mutual shadowing. Because of mutual shadowing, however, 

the net projected area was i
R

e
sec

2

1 . We defined the 

quantity Mi , the mutual shadowing proportion in the 

illumination direction as Mi =1
1 e R2 sec i

R2 sec i

. Mi  which 

revealed the degree of mutual shadowing in the illumination 

direction. In other words, each spheroid, on average, had a 

proportion 
i

M  of the imaged An. arabiensis habitat surface 

 
 

Fig. (3). A 3-D paddy preparation An. arabiensis habitat sampled in ENVI
®

. 
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area that was not sunlit. This part of the habitat was 

concentrated at the lower part of the spheroid. We then 

generated a boundary drawn on the habitat surface of the 

spheroid with the area comprising 
i

M  located below it. 

Similarly, we defined Mv  as the mutual shadowing 

proportion of the rice plant components in the view direction 

as Mv =1
1 e R2 sec v

R2 sec v

.The viewing shadows were also 

concentrated at the lower part of the spheroid so we were 

able to define the 
v

M  boundary. The proportion of sunlit 

the QuickBird sensor captured corresponded to the area 

above both 
i

M  and 
v

M  boundaries which depended on 

both zenith and azimuth differences between the illumination 

and view directions. At the hotspot, 
i

M  and 
v

M  

boundaries overlapped and the data revealed no mutual 

shadowing of the An. arabiensis habitat components. In this 

research when the view zenith angle was larger than the 

illumination zenith angle, 
v

M  was greater than 
i

M  and 

little or no mutually-shaded habitat area was visible, based 

on the azimuth differences between the imaged objects. 

Thus, were able to capture the essence of the mutual-shading 

effect of the An. arabiensis habitat canopy components.  

We then quantified the f -Ratio of non-nadir viewed 

spheroids. First, we considered a single spheroid in the 

decomposed QuickBird pixel spectral data. For the 

spheroidal case, it is necessary to show whether the f -ratio 

is still independent of density, as in the case of the nadir-

viewing cones [20]. From the view direction, the spheroid 

had a projected area v = R2 sec v ; however, only the 

portion 
1

2
1+ i , v( )  of that An. arabiensis habitat was 

sunlit. Similarly, the illumination shadow on the ground 

occupied the habitat area R2 sec i . The compound area of 

the habitat plus illumination shadow projected onto the 

background was = R2 sec i + sec v O i , v ,( ) . We then 

were able to define the ratio F  for the spheroidal and its 

associated attributes as F = c =

1

2
1+ i , v( ) sec v

sec i + sec v O i , v ,( )
, where 

c
 was the sunlit area of the An. arabiensis habitat and we 

defined the corresponding ratio

g

c

K

K
f =
1

for the endmember 

selection of these sub-pixel emissivities. In this research, n  

represented the shadow parameters generated from the 

decomposed QuickBird An. arabiensis habitat pixel. If there 

was no mutual shadowing, f = F
.
 As n  increased, 

however, mutual shadowing occurred, and as such 

Kg = e
R2 sec i+sec v O i , v ,( )

. We then defined the mutual 

shadowing proportion M  as M =1
1 Kg  , which was the 

fraction of total shadowing cast from the LULC components 

that fell onto the An. arabiensis habitat instead of the 

background. The sunlit and viewed habitat surface features 

was reduced by hiding either from viewing or from 

illumination.  

We then quantified the f -ratio with mutual shadowing 

which was where Ac
 was the total 

decrement from 
c

n  to 
c
A  (i.e., the background-projected 

area of viewed sunlit An. arabiensis habitat surface). We 

expressed Ac
 as three terms: a decrement due to mutual 

shading in the view direction plus a decrement due to mutual 

shading in the sun direction, minus those elements shaded in 

both directions using Ac
= n v PvMv + PiMi Po( ) ,where 

v
P  was the conditional probability that the An. arabiensis 

habitat faced the sun given that it was mutually shaded from 

view. In this research 
i
P  was the probability that the An. 

arabiensis habitat surface elements faced the viewer given 

that it was mutually shaded from illumination. Both 
i
P  and 

v
P  were average proportions of the habitat areas projected in 

the view direction. Po , the third term, was the overlapped 

part of the first two terms, expressed as a fraction of 
v

. In 

this research, Po  contained three parts derived from the 

habitat surface element and the rice- vegetation canopy 

structure. This collection contributed to the hotspot, due to 

the spatial correlation of the shadows. Since the probabilities 

of being hidden in multiple directions were not independent, 

we were able to substitute Ac
= n v PvMv + PiMi Po( )  

into which yielded a single expression 

for f = F
1 v PvMv + PiMi Po( ) c

1 M
.  

We then quantified 
v
P , Pi  and Po . We used all 

illumination or viewing shadows incorporating 
i

M  or 
v

M  

boundaries respectively. In our model, Pv , Pi  and 
o
P , where 

used to visualize the Mv  and Mi  boundaries. If viewing and 

illumination shadows fall strictly below Mv  and Mi  

boundaries, then Pv , the conditional probability that at 

surface element facing the sun given the mutually shadowed 

areas will be the ratio of the illuminated portion of the 

projected surface below the 
v

M  boundary [20]. 

Correspondingly, in this research, Pi  was the conditional 

probability that the An. arabiensis habitat directly faced the 

viewer given that it was mutually shaded from illumination 

and was the ratio of the viewed portion of the projected 

habitat area below the Mi  boundary. Note, that 
i

M  was the 

proportion of mutually-shaded An. arabiensis habitat habitat 

surface projected to the direction of illumination, but 
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vii
MP  was the area of this fraction of the habitat surface 

which was projected to viewing direction. Proper calculation 

of this portion of the habitat and its associated attributes 

involved some projection change. We used 
o
P  as the 

variable representing the overlap area o, which was also 

represented as a fraction of 
v

. We then considered the case 

in the principal plane. For simplicity, we assumed that all 

shadows from the An. arabiensis habitat and its LULC 

components fell below the boundaries 
v

M  and
i

M , which 

were the traces of planes intersecting the spheroid at its 

center. The angle between the planes of the
i

M and the 

illumination boundary was: ( )
iM

M
i

21cos
1= .We 

then defined 
v

M
 similarly. Our results indicate that in An. 

arabiensis habitat hotspot when the 
i

M  and 
v

M  

boundaries coincided then Pv = Pi =1 , Po = Mv = M , and 

f = F =1 . We then assumed that the viewing zenith angle 

increased to v > i . In usual cases when mutual shadowing 

of a sunlit spatial object , the 
v

M  boundary is higher than 

the Mi  boundary [5]. In the QuickBird sensor’s view, 
v
P  

was the ratio of the An. arabiensis habitat’s surface area 

between 
v

M  boundary and the illumination boundary to the 

whole area under the Mv  boundary. That is,

 
Pv =

Mv v v c( )
Mv v

while Pi  was one, and Po  cancelled 

the Mi  term. Then, the equation become 

f = F
1 PvMv v c

1 M
= F

1 Mv( ) v

1 M( ) c

=
1 e v

1 Kg( )
.This result 

suggested that when the viewing direction in the principal 

plane deviated from v > i( ) , the f -ratio will change. 

When the coverage is very low, the increment of 
v

M
 may 

be also so small that Mv  will be under the Mi  boundary [2]. 

In this research we found that when 
v

 moved inward on the 

principal plane but had not reached nadir, the 
i

M  was 

higher than Mv : hence, Pv =1 , Po = Mv , and 

( )

i

i

M

viM

i
P

cos1

coscos1 +
=  After 

v
 passed the 

nadir, the Mv  boundary went to the opposite side of the 

spheroid from Mi . In this case, the QuickBird sub-pixel 

spectral data revealed the horizontal projection of the habitat 

and its LULC components at 2= . We then used 
i
P  

with  equal to  and Pv  which was the fraction of 
v

M  

over the illumination boundary which rendered:

 Pv =

1 cos Mv v + v cos( )
1 cos Mv

, Mv v + v cos( ) 0

0, Mv v + v cos( ) < 0

 

Our residual model estimates also revealed that when 
v

 

was between the An. arabiensis habitat hotspot and nadir, 

v
P  was always one, and, thus, a discontinuity of 

v
P  

appeared at the nadir. This discontinuity arose from the 

 
 

Fig. (4). Kriged larval/pupal abundance counts from the paddy preparation An. arabiensis habitat pixel spectral emissivity estimates sampled 
in the Karima study site 
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assumption that all shadows fell under the 
v

M  boundary. 

Additionally, in this research, the Mv  at v = 0  was the 

physical intersection of boundaries between the An. 

arabiensis habitat and its LULC components, which did not 

change with viewing geometry, thus, PvMv  was still 

continuous at nadir, and equal to Po . In other words, the 

formula had a very large viewing zenith, so that 

Mv i + v cos ) > 0 . 

In this research when Mi  and Mv  were 

independent, Ac
n c( ) = M ,. . If 

all the spatial objects are at the same height, the situation 

will be very close to the “uniform height case” – mutual 

shadows will always fall on the lower part of the objects and 

the object top-viewing effect will be strong; however, when 

heights are distributed over a wide range, the top layer of the 

canopy will play a more important role in determining the 

BRDF of the canopy than the lower layer [20]. Therefore, 

when the An. arabiensis habitat structural heights were 

quantified by spectral distribution, the BRDF was apparent. 

The BRDF was determined by the size, shape, and height of 

the habitat and its associated LULC components in the top 

layer. Thus, we restricted ourselves to considering a single 

top layer only, where the range of distribution of height of 

the sampled habitat and its attributes did not exceed twice 

the vertical axis of the spheroid. To share the weighting 

between the spatiotemporal-sampled explanatory spectrally 

dependent covariates we used the 

parameter = 1
h2 h1
4b

2

 Then both 
v
P  and 

i
P  were 

calculated as a weighted sum of corresponding 

terms ( )
21

1 PPP += , where 
1
P  and 

2
P  were the 

spectral probabilities associated with the spatial dimensions 

of the sampled habitat. The resulting scene was broken down 

into their canopy fractions specifically sunlit and shadowed 

background and scene brightness. Illumination direction was 

calculated by a linear combination of the canopy fractions 

and their respective radiance estimates. 

An expression for additional azimuthual variation was 

also derived from the geometric-optical model. This 

azimuthual variation differed fundamentally in radiance for 

each elementary layer of the An. arabiensis habitat canopy. It 

was observed that all non-zero polar angles were most 

evident in the canopy when vertical and nearly opaque 

components of the habitat and its LULC components which 

were illuminated and viewed along polar sun angles. For the 

variation of the directional reflectance of the An. arabiensis 

habitat canopy cover with azimuthual view angle, shade-

related parameters were quantified when the illuminated area 

of the imaged habitat (i.e., areas that was affected by the sun 

at large angles from the zenith) was remotely identified. Our 

results also indicated that the cause of the azimuthual 

variation could be traced to solar flux illumination of the 

vertically-oriented rice plant components and the variation of 

reflectance moderated by azimuthally isotropic sources of 

flux from sky light and the habitat canopy reflectance values. 

A scattergram representing the endmember reference 

signature of the An. arabiensis habitat spectral reflectance 

values was then generated.  

Semivariogram plot of the logit scale model residuals 

was constructed, confirming a short range spatial pattern up 

to a distance of about 5 km. To carry out this process, 

residuals for all observed points were calculated on the logit 

(ln(p/1 - p)) scale of the model. The kriging module included 

a An. arabiensis habitat variogram model represented as : 

  

 A kriged map of deviance residuals was then calculated 

which was added to the predicted values on the logit scale 

before transforming the results back to proportions for the 

study site. Spatial dependence, displayed by these plots, was 

modeled using a constructed semivariogram. The addition of 

kriged residuals allowed the output to deviate from the 

model; the deviation was supported by the endmember 

spectral data. These smoothed values improved the final 

maps of the paddy preparation An. arabiensis habitat data 

sampled in the study site. An exponential model was fitted to 

the semivariogram, using a range of 72.6 m, a nugget of 0.21 

(variance), a lag size of 11.5 m with 12 lags and a partial sill 

of 0.24 (variance) for the riceland study site (Fig. 4). 

We then calculated the kriged-based interpolation error. 

In this research, the error of i-th estimate, ri, was the 

difference of estimated value and true value at that sampled 

An. arabiensis habitat location: . The average 

error of a set of k estimates was: , and 

the model autoregressive error variance was: 

 In this research V(Xi). 

Xi was the habitat location of observed data for i > 0 and i 

<= n. The unknown value at the predicted habitat location 

was V(X0). The final kriged-based interpolation error 

variance was   

In order to get the minimum variance of error, we calculated 

the partial first derivatives of the equation for each w and 

setting the result to 0. Herewith the differentiation with 

respect to w1 was
 . All of weight Wi in the model was represented as: 

 for each i, 1 <= i <= n. We quantified each 

weight Wi through the equation. After generating the value, 

we estimated the habitat value located in X0. In this research 

we used the An. arabiensis habitat variogram instead of 

covariance to calculate each weight of the equation. The 

final variogram was  and the minimized 

estimation variance was . 
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DISCUSSION 

The regression analyses identified paddy preparation as 

the rice-stage with the highest larval/pupal counts. The 

occurrence of higher immature An. arabiensis counts during 

the paddy preparation stage of rice cycle has been attributed 

to the presence of numerous open sun lit pools created by 

rice workers [70-72]. These results suggest that agricultural 

practices have significant influence on mosquito species 

diversity and abundance and that certain habitat 

characteristics favor production of malaria vectors. These 

factors should be considered when implementing larval 

control strategies which should be targeted based on habitat 

productivity and water management. 

In this research, the residuals from the regression were 

the spatiotemporal-sampled An. arabiensis habitat values of 

the dependent variable Y minus the estimates of their values 

and the independent variable X. Since the i
th

 datum was (xi, 

yi) and the equation of the regression line was y = a x+b, the 

i
th

 residual was ei = yi - ( a xi+b). A residual plot (i.e. 

scatterplot of the n points (xi, ei), i = 1, … , n) was then 

generated. Scatterplots shows heteroscedasticity, nonlinear 

association, or outliers if and only if the original scatterplot 

does, but it is easier to see these qualitative features of 

bivariate data in the residual plot than in the scatterplot of 

the original data [20]. We found that the correlation 

coefficient between the residuals and the independent 

variable was zero—the residuals did not have a trend with 

X—and the average of the residuals was zero. If the residuals 

have a trend in a linear predictive vector mosquito habitat 

model, the slope of the regression line is computed 

incorrectly but, if the residuals do not have a trend and the 

mean of the residuals is not zero then the intercept of the 

regression line is computed incorrectly[1]. In this research, 

the rms of the residuals, measured the average error of the 

regression line while estimating the dependent variable Y 

from the independent variable X. The rms error of regression 

was dependent only on the correlation coefficient of X and Y 

and the SD of Y: rms error of regression = (1 - (rXY)
2
)  

SDY.  

In this research, ENVI
® 

software automatically 

categorized individual pixels of paddy preparation An. 

arabiensis habitats into separate spectral classes, converted 

remotely sensed raster layers to vector coverages and 

classified the layers as ESRI shapefiles. ENVI
®

 data 

displayed all the georeferenced habitats by LULC data. The 

object based classifier provided methods for locating specific 

paddy preparation An. arabiensis pixels for interactive 

spatial/spectral pixel editing. For example, the ENVI
®

 

Feature Extraction module helped automate the process of 

performing accurate segmentations for image classification 

of the paddy preparation habitat. Additionally, the FLAASH 

module in ENVI
®

 provided an accurate means of 

compensating for atmospheric effects in the riceland 

environments. Most atmospheric correction programs do not 

consider properties such as elevation, water vapor, and 

aerosol distribution [73]. The FLAASH model included a 

method for retrieving an estimated aerosol/haze amount from 

selected “dark” land covers pixels of the paddy preparation 

An. arabiensis habitats in the QuickBird scene. Use of 

ENVI
®

 for ArcGIS
®

 supported the production of intuitive 

workflows in the ENVI
®

 module for conducting tour object-

oriented classification using the field and remote-sampled 

riceland habitat data. 

Independently determined spectral signatures for each of 

shadowed or sunlit habitat components and other sampled 

covariates were then calculated by the Li-Strahler 

geometric–optical model using the spectral bidirectional 

reflectance of the habitat surface variables. The model 

quantified predictor variables such as rice vegetation canopy 

as an assemblage of partially illuminated spatial objects 

using geometric optics and Boolean set theory. Our model 

also established the proportion of shadowed canopy and 

background of the sampled paddy preparation An. arabiensis 

habitat pixel and their associated variables as a function of 

view angle and illumination angle. Illumination angles 

determine the primary path that incident light will trace into 

the rice-canopy and control the relative proportion of plant 

tissue that will be illuminated [70]. Directional reflectance of 

the geometric-optical model was then integrated to generate 

hemispherical reflectance for given illumination angles, 

using the Boolean algorithms, canopy characteristics and 

spectral signatures generated from the paddy preparation An. 

arabiensis habitat.  

One of the main input variables of the inverted model 

was the fractional component of sunlit background. The 

model also removed the effect of shadow from the paddy 

preparation An. arabiensis habitat signatures before saving 

the output fractional images. Samples measured directly in 

the field are often disturbed in some way, removing the 

influence of the components’ spatial distribution (leaf angle 

distribution, clumping index, etc.) and canopy multiple 

scattering contributions based on spectral intensity which are 

especially important to shaded endmembers [74]. Apparent 

spectral reflectance characteristic shaded components are 

often ignored, or grouped together to form one endmember, 

regardless of the spectral differences between each 

endmember [75]. In this research the understory shading 

caused by solar zenith angle variation in sampled riceland 

An. arabiensis habitats was quantified by the geometric-

optical model. Geometric-optical models can be used to 

estimate sunlit canopy component reflectance and shadow 

reflectance for predicting biophysical parameters at sub-pixel 

scales [76]. The shadow area of a sampled paddy preparation 

An. arabiensis habitat was specified as a separate spectral 

signature segment. 

 The habitat pixel spectral signatures were the validated 

using the linear umixing algorithm but did not include any 

treatment of diffuse irradiance and tiller specularity. This 

required the selection of spectral signatures for each 

endmember which was calculated by the unmixing 

algorithm. The unmixing algorithm decomposed the paddy 

preparation An. arabiensis habitat into their respective 

endmember and abundances. The model revealed that total 

surface area of the paddy preparation habitat pixel was 

divided proportionally according to the fractional 

abundances of the An. arabiensis habitat surface 
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components. The endmember validation model revealed that 

the reflected radiation of a sampled habitat conveyed the 

correct spectral proportions of habitat characteristics and 

their associated surface materials. In this sense, a linear 

relationship existed between the fractional abundance of the 

substances comprising the paddy preparation habitat surface 

area being imaged and the spectrum of the reflected An. 

arabiensis habitat radiance estimates. The unmixing 

classification used the reflected spectral data for separating 

significantly contrasted pixels (e.g., a vegetated pixel next to 

a water pixel) and also separated regions within a paddy 

preparation habitat that were not excessively different based 

on pixel digital values (e.g., rice plant pixel next to a grass 

pixel). 

Although endmember extraction algorithms can 

determine factors that contribute to producing the digital 

number, the influence of the local topography on reflectance 

has be corrected prior to pixel spectral reflectance estimation 

[66]. For example, our models revealed that the digital value 

of a QuickBird An. arabiensis habitat pixel corresponded to 

geometric and radiometric parameters of the calculated 

radiance. However, where as the path radiance and the 

upward transmittance dependent on the thickness of the 

atmosphere between the habitat surface and the QuickBird 

sensor (i.e. the elevation of the target), only specific 

components were modified by the relative orientation of the 

target pixel. Thus, the direct and the diffuse irradiance 

captured of the paddy preparation An. arabiensis habitat 

pixel may have been dependent on the angle between the 

habitat surface and the sun ray direction. As such, in this 

research a direct irradiant was computed by means of the 

cosine law from slope and aspects of the paddy preparation 

An. arabiensis habitat. A mask of cast shadows at the time of 

image acquisition was also computed to isolate habitat areas 

which were not getting any direct irradiance. To estimate the 

environmental irradiance for the riceland study site, a terrain 

view factor was computed in an analogous way. We were 

then able to account for the irradiance of the reflecting 

habitat surface components while encompassing the distance 

and atmospheric transmittance. Finally, the DN’s in the 

image were converted to scene radiances by means of the 

calibration coefficients provided by the paddy preparation 

An. arabiensis habitat pixel surface reflectance. 

Semivariograms were then generated in ArcGIS
®

 Spatial 

Analyst which modeled the structure of spectral variability in 

the extracted paddy preparation habitat pixel. The 

semiovariogram was useful for summarizing the spatial 

continuity of the prolific habitat. Optimal linear predictors 

were generated by incorporating a model of the covariance 

of the random function using a weighted moving average 

interpolation and the QuickBird pixel spectral estimates. The 

model measured the local variation in the paddy preparation 

An. arabiensis sampled data as a function of distance and 

direction. The kriged smoothed maps, generated through the 

regression models displayed spatial patterns of the habitats. 

The kriged models provided a method for not constraining 

the An. arabiensis reference signature. In turn, the kriging 

algorithm allowed distance and direction in the interpolation 

process to be analyzed, which minimized the variance of 

unexpected error.  

One of the advantages of quantifying pixel reflectance 

heterogeneity at the habitat scale using variogram models is 

statistical measures generated may also be parameters in 

analytical expressions that represent all, or part of a 

probability density function. Techniques vested with the 

assumption that the data originate from a parameterized 

probability density function are considered parametric [64]. 

In this research, polygons were digitized based on the 

georeferenced images within a GIS, which helped build the 

models based on the field and remote-sampled data for 

geostatistical interpolation of the An. arabiensis maps. 

Kriging was applied to the centroids of the 

polygons/digitized grid cells for calculating the maps, based 

on the pixel spectral reflectance estimates. The quality 

assessment of the maps was conducted by using statistical 

mean values. Predictive parametric algorithms generated 

using sub-pixel radiance estimates extracted from a paddy 

preparation An. arabiensis habitat can develop powerful 

predictor models for identifying other prolific habitats while 

incorporating many complexities (e.g. clustering of habitats 

based on larval/pupal productivity).  

The pioneering nature of the conceptualization and 

analysis presented in this research alludes to many themes 

meriting future endmember An. arabiensis habitat research 

For example, spectral unmixing may be applicable to 

hyperspectral imagery and QuickBird data for mapping 

vegetation parameters of georeferenced spatiotemporal-

sampled paddy preparation An. arabiensis habitats. In 

previous research hyperspectral bidirectional reflectance 

distribution function data of Konza prairie grassland 

acquired in the First International Satellite Land Surface 

Climatology Project (ISLSCP) Field Experiment (FIFE) on 

the ground captured with two SE-590 instruments and with 

the airborne advanced solid-state array spectroradiometer 

(ASAS) were analyzed and compared to BRDF data of dense 

ryegrass obtained with the European goniometric facility 

(EGO) and the Swiss field-goniometer system (FIGOS)[20]. 

The soil underlying the relatively sparse Konza prairie grass 

disturbed the spectral BRDF effects of the vegetation 

components. After a correction of the soil influence based on 

the bidirectional canopy gap probability, the Konza data 

from SE-590 and ASAS sensors revealed a consistently 

strong dependence of spectral BRDF effects from nadir 

reflectance as was observed in the EGO and FIGOS data. 

Indices such as Normalized Difference Vegetation Index 

(NDVI) Simple Ratio Index (SRI) and the Soil Adjusted 

vegetation Index (SAVI) thus may provide data information 

on vegetation-related parameters associated to productive 

An. arabiensis habitat using QuickBird and hyperspectral 

data. Although the potential of hyperspectral remote sensing 

and QuickBird data for spatially targeting An. arabiensis 

habitats is exciting there are special issues that arise with this 

unique type of imagery. For example, many of the 

hyperspectral analyses algorithms require accurate 

atmospheric corrections to be performed. Because the solar 

radiation on the sun-surface-sensor path in the 0.4–2.5 m 

visible and NIR spectral regions is subject to absorption and 
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scattering by atmospheric gases and aerosols, the 

hyperspectral imaging data contains atmospheric effects [5]. 

Therefore, In order to use hyperspectral imaging data for 

quantitative remote sensing of land surfaces for identifying 

An. arabiensis habitats the atmospheric effects must be 

removed. Fortunately, over the years, atmospheric correction 

algorithms have evolved from the earlier empirical line 

method and the flat field method to more recent methods 

based on rigorous radiative transfer modeling approaches. 

Sophisticated atmospheric corrections algorithms have also 

been developed to calculate concentrations of atmospheric 

gases directly from the detailed spectral information 

contained in the imagery itself without ancillary data. These 

corrections can be performed separately for each pixel. 

Several of these atmospheric correction algorithms are 

available within commercial image processing software. 

Unfortunately, there are only few hyperspectral sensors 

presently available. Nevertheless, hyperspectral sensors are 

acquiring imagery from space including the Hyerion sensor 

on NASA’s EO-1 satellite, the CHRIS sensor on the 

European Space Agency’s PROBA satellite and the FTHSI 

sensor on the US Air Force Research Labs. Mighty Sat II 

satellite and The EROS Data Center currently provides 

Hyperion imagery at a relatively low cost to the general 

public. Many airborne hyperspectral sensor including 

NASA’s AVIRIS sensor are also available to collect data. 

Spectral indices obtained from ground-based hyperspectral 

instruments such as spectroradiometer along with QuickBird 

data may then be a used to quantify vegetation covaraites 

associated to productive An. arabiensis habitats. 

In the future we may also statistically classify riceland 

An. arabiensis habitats varieties using canopy BRDF data 

throughout the rice cycle. Mwangangi et al. [69] used an 

experimental paddy field to determine environmental 

conditions such as soil, nutrients, predators and other An. 

arabiensis habitat predictor variables were not homogeneous 

throughout the rice cycle. Spectral reflectance of each of 

riceland habitat varieties should be measured at nadir and at 

off-nadir angles of 45°, 30°, 15°, –15°, –30°, and –45° on 

both the principal and perpendicular planes at intervals of 

1 nm from 400 to 850 nm, for example. The reflectances in 

QuickBird visible and NIR bands at every measuring angle 

may then be computed for each riceland An. arabiensis 

habitat variety. As a result the number of riceland habitat 

varieties that can be statistically distinguished using BRDF 

data may be larger than the number that can be distinguished 

using QuickBird spectral reflectance data at the nadir angle. 

The difference in BRDF among riceland An. arabiensis 

habitat varieties may be statistically significant. 

In conclusion, a regression model using QuickBird 

LULC covariates and spatiotemporal field-sampled data 

revealed significantly higher An. arabiensis larval/pupal 

counts during the paddy preparation stage of rice 

development. ENVI
® 

categorized individual pixels of a 

paddy preparation An. arabiensis habitats into separate 

spectral classes, converted remotely sensed raster layers to 

vector coverages and classified the layers as ESRI 

shapefiles. Topographic effects on the bidirectional and 

hemispherical reflectances generated from the habitat surface 

were then calculated with a geometric-optical model. Results 

indicated that the empirical and cosine correction used on the 

decomposed data was effective for all QuickBird spectral 

bands in both the solar and view directions. Our model.used 

a hemispherical integration of the BRDF which also 

provided an albedo estimate for the heterogeneous 

topographic habitat surface. Mutual shadowing proportions 

generated from the An. arabiensis habitat and its associated 

components were also quantified. Additionally, the model 

simulated accurately the changing of “hotspot” location with 

increasing view zenith angles in different areas of the 

sampled habitat based on the different solar zenith angles. 

The final model could simulate the angular distribution 

characteristic of reflectance spectrum of riceland An. 

arabiensis habitat canopies and the unsymmetrical 

distribution of the hotspot effect well. The model also 

revealed that the paddy preparation An. arabiensis habitats 

and their associated land cover attributes generated 

reflectance values based on areal proportions for the 

radiometric elements sunlit canopy, sunlit background and 

shadow fraction. The unmixing algorithm then identified the 

fractional presence of each endmember associated with the 

paddy preparation An. arabiensis habitats using separate sub-

pixel spectral estimates. Thereafter, a kriged-based 

interpolation map displayed the spatial patterns of all other 

productive An. arabiensis habitats based on the reference 

signature. Spectrally quantifying QuickBird sub-pixel 

reflectance estimates from a productive An. arabiensis 

habitat can help guide larval control by spatially predicting 

other highly prolific unsampled habitats based on 

endmember spectral radiance. 
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