The Open Petroleum Engineering Journal

2017, 10 : 143-151
Published online 2017 May 31. DOI: 10.2174/1874834101710010143
Publisher ID: TOPEJ-10-143

RESEARCH ARTICLE
Horizontal Bedding Shale Geostress Calculation Method

Zhang Ligang, * , Qu Sining , Yan Tie and Guan Bing

* Address correspondence to this author the School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Hei Longjiang Province, P.R. China, Tel: +96-04576502953; E-mail: zhangligang@163.com

ABSTRACT

Background:

Since the fragile anisotropy of shale, it is difficult to carry out laboratory experiments of geostress by shale cores. The existing geostress calculation model that is based on the homogeneous hypothesis also cannot meet the accuracy requirement. Therefore, it is necessary to establish the new geostress calculation model and test methods which are suitable for shale and provide the effective guidance for drilling and fracturing.

Methods:

Firstly, the triaxial stress experiments were carried out. It showed that the mechanical parameters had strong difference between parallel and vertical bedding direction. The characteristics of transversely isotropic were shown obviously. Then, the geostress calculation model which considers the mechanical parameters of anisotropy in different direction was established by the constitutive relation of transversely isotropic materials. Finally, it was assumed that there is no relative displacement between formations in the process of deposition and the late tectonic movement; the prediction method for the shale geostress was established by the adjacent homogeneous formation. The sensitivity factors and influence laws were analyzed for the horizontal bedding shale geostress.

Results:

The results showed that the shale geostress was controlled by the elastic parameters of its own and the adjacent beds’.

Conclusion:

The research can provide the theoretical basis and easy way for calculating the shale geosterss.

Keywords:

Geostress, Horizontal bedding shale, Transversely isotropic characteristics, Anisotropic characteristics.