The Open Petroleum Engineering Journal

2018, 11 : 29-47
Published online 2018 April 30. DOI: 10.2174/1874834101811010029
Publisher ID: TOPEJ-11-29

RESEARCH ARTICLE
Analyzing Effects of Multi-Wall Carbon Nanotubes (MWCNT) & Polyethylene Glycol (PEG) on Performance of Water Base Mud (WBM) in Shale Formation

Koorosh Tookalloo1, * , Javad Heidarian2 , Mohammad Soleymani2 , Alimorad Rashidi2 and Mahdi Nazarisaram1

* Address correspondence to this authors at the Department of Petroleum Engineering, Faculty of Engineering, Islamic Azad University-Central Tehran Branch, Tehran, Iran, Tel: 00989126837301; E-mail: koorosh2kalloo@yahoo.com

ABSTRACT

Background:

Due to importance and unique properties of Multi-Wall Carbon Nanotube(s) (MWCNT), in the present study, effectiveness of these materials in Water Base Mud (WBM) is evaluated.

Objective:

The impacts of mud additives, local water and the addition of phases of bentonite and surfactants on the rheological properties, water loss and stability of water base mud in the absence of Multi-Wall Carbon Nanotube have been experimentally investigated.

Materials and Methods:

Then, the same experiment performed in the presence of Multi-Wall Carbon Nanotube to determine the efficiency and impact of Nanoparticles (NPs) on the properties of water base mud. The results have shown that additives, local water, Multi-Wall Carbon Nanotube dimensions, addition phase of bentonite and surfactants have influenced the rheological properties of the water base mud.

Results:

When Multi-Wall Carbon Nanotubes and polyethylene glycol alone or together are added, the performance terms of rheological properties decrease as by the subsequent order CNT; CNT + PEG; PEG. Multi-Wall Carbon Nanotube improves shale integrity and increases shale recovery.

Conclusion:

In general, the presence of Multi-Wall Carbon Nanotube increases the efficiency of polymers and rheological properties of the water base mud and eventually the shale stability is achieved.

Keywords:

Water Base Mud (WBM), Rheological properties, Nanoparticles, Multi-Wall Carbon Nanotube, Polyethylene Glycol, Shale stability.