The Open Petroleum Engineering Journal
2018, 11 : 48-66Published online 2018 April 30. DOI: 10.2174/1874834101811010048
Publisher ID: TOPEJ-11-48
RESEARCH ARTICLE
Lattice Boltzmann Simulation of Natural Convection in a Fractured Petroleum Reservoir Domain: Single-Phase and Multi-Phases Investigations
* Address correspondence to this author at the Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran, Tel +983432118298, Fax: +983432118298; Emails: ; amohebbi2002@yahoo.com
ABSTRACT
Background:
Natural convection is one of the main effective production mechanisms in a fractured petroleum reservoir.
Objective:
This paper investigated the simulation of natural convection heat transfer in a fracture domain of petroleum reservoir.
Methods:
This is done by using Lattice-Boltzmann Equation (LBE) method. In this study, a D2Q9 lattice model was coupled with the passive-scalar lattice thermal model to represent density, velocity and internal energy distribution function, respectively.
Results and Conclusion:
The results were in excellent agreement with CFD results from the literature. The effects of Rayleigh number and Aspect-Ratio (AR) on flow pattern and temperature distribution were studied. The results indicated that natural convection rate increased with the Rayleigh number increment. The local Nusselt number (Nu) was evaluated on the hot wall and it was rising with increasing the Rayleigh number. Streamlines and temperature field were affected significantly by changing the aspect-ratio. Moreover, first of all, natural convection in Single Component Mutli-Phase (SCMP) was discussed and here and then after validation of SCMP model, the results indicated that the streamline and isotherm were affected by second phases because of the formation of two-phase flow in some of the reservoirs or production period.