The Open Petroleum Engineering Journal

2015, 8 : 208-213
Published online 2015 July 24. DOI: 10.2174/1874834101508010208
Publisher ID: TOPEJ-8-208

Study on Wellbore Stability and Instability Mechanism in Piedmont Structures

Qiang Tan , Baohua Yu , Jingen Deng , Kai Zhao and Jianguo Chen
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, 102249, China.

ABSTRACT

Piedmont tectonic belts are rich of oil and gas resources, however the intense tectonic stress and broken formation may cause great drilling problems in piedmont structures such as borehole collapse, lost circulation and gas cutting. Through analysis of in situ stress properties, bedding structure and mechanical characteristics, wellbore instability mechanism was expounded from rock mechanics, chemistry of drilling fluid and drilling technology. The high tectonic stress, formation strength decreasing and fluid pressure rising after mud filtrate seepage are main reasons for borehole collapse. The methods of calculating collapse and fracture pressure and determining drilling safety density window were put forward based on mechanical analysis. In order to reduce drilling problems in piedmont structures, some countermeasures should be taken from optimizing well track and casing program, using proper mud density, improving inhibitive and sealing ability of drilling fluid. Good sealing ability can reduce seepage and cut off pressure transmission, enhancing the effective support force. This is the key technology of maintaining wellbore stability in hard brittle shale in piedmont structures.

Keywords:

Collapse pressure, instability mechanism, leakage pressure, piedmont structure, wellbore stability.